phunc20/trocr-base-handwritten_nj_biergarten_captcha_v2
Image-to-Text
β’
0.3B
β’
Updated
β’
10
β’
1
image
imagewidth (px) 140
140
| label
stringlengths 6
6
|
|---|---|
flf1gm
|
|
rt3168
|
|
thu8mm
|
|
abgl5t
|
|
wgp7ti
|
|
n1w61y
|
|
65hhcc
|
|
n5mius
|
|
dpjkb4
|
|
a9rgit
|
|
ph8d88
|
|
ildvp8
|
|
n2bkqf
|
|
n569g1
|
|
hwzklg
|
|
dd47w7
|
|
92z3ug
|
|
xs9sy6
|
|
1ee7eg
|
|
ik7e7u
|
|
wjubjl
|
|
cmnaa4
|
|
ec8ewc
|
|
d2t2ew
|
|
ay5g4j
|
|
yfyz7u
|
|
glr5s5
|
|
l8aduj
|
|
uqu9dv
|
|
j4u56d
|
|
67n7v5
|
|
d1h65s
|
|
j4msvh
|
|
g5zekt
|
|
tyvvfn
|
|
tt8lid
|
|
92evaa
|
|
416gkh
|
|
89z6r9
|
|
wttmlh
|
|
1pxnz1
|
|
mscunm
|
|
zenw9e
|
|
raiw33
|
|
5jtd6z
|
|
nu93nz
|
|
5259lc
|
|
vyxvg1
|
|
mbgmtz
|
|
mq6fn7
|
|
4zc6kb
|
|
ty9vtz
|
|
9c7eic
|
|
r7ayza
|
|
uthgyj
|
|
7njnug
|
|
ivbyqm
|
|
7qkd8a
|
|
hsimc9
|
|
8g3l6b
|
|
wy56r9
|
|
31anzc
|
|
3hke1m
|
|
eiu2pp
|
|
qxtlsx
|
|
p7qkay
|
|
hpllzz
|
|
r7fidh
|
|
6bjqe6
|
|
xqpfu8
|
|
xfkpmn
|
|
ez1hjb
|
|
z7nbum
|
|
vx5rjr
|
|
ysqm2n
|
|
5op3cm
|
|
tix3jh
|
|
ck3mvr
|
|
bqkxia
|
|
fhnu2s
|
|
5arjnd
|
|
e3p8h2
|
|
z5r9kg
|
|
wfm1pp
|
|
mmkb4v
|
|
i8ni6h
|
|
nd9amj
|
|
4tb6go
|
|
d6xy7l
|
|
r8lreb
|
|
cvj6xr
|
|
pwhqt6
|
|
ngruym
|
|
jjaorg
|
|
upf4dx
|
|
ye5z1w
|
|
xifuwx
|
|
gh4nbz
|
|
27ml6c
|
|
8m3mip
|
I have uploaded previously a dataset similar to this one, and that's why
this one is named with the suffix _v2. In this dataset card, we shall refer to
the previous dataset by the name of v1.
This v2 version attempts to fix the following issues:
"jj12oj".The usage and meaning of the current v2 dataset should be intuitive (and quite independent of v1):
In [1]: from datasets import load_dataset
In [2]: dataset = load_dataset("phunc20/nj_biergarten_captcha_v2)
README.md: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 533/533 [00:00<00:00, 1.58MB/s]
train-00000-of-00001.parquet: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 36.3M/36.3M [00:07<00:00, 2.02MB/s]
validation-00000-of-00001.parquet: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 541k/541k [00:00<00:00, 2.06MB/s]
test-00000-of-00001.parquet: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 931k/931k [00:00<00:00, 2.04MB/s]
Generating train split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 20000/20000 [00:00<00:00, 113382.55 examples/s]
Generating validation split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 300/300 [00:00<00:00, 45083.88 examples/s]
Generating test split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 500/500 [00:00<00:00, 92186.56 examples/s]
In [3]: dataset
Out[3]:
DatasetDict({
train: Dataset({
features: ['image', 'label'],
num_rows: 20000
})
validation: Dataset({
features: ['image', 'label'],
num_rows: 300
})
test: Dataset({
features: ['image', 'label'],
num_rows: 500
})
})
In [4]: dataset["test"][0]["label"]
Out[4]: '9ymyht'
In [5]: dataset["test"][0]["image"]
Out[5]: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=140x50>
@ONLINE{nj_biergarten_captcha_v2,
author = "phunc20",
title = "nj_biergarten_captcha_v2",
url = "https://huggingface.co/datasets/phunc20/nj_biergarten_captcha_v2"
}