Dataset Viewer
Auto-converted to Parquet
question
stringlengths
6
89
choices
listlengths
4
4
answer
int64
0
3
answer_label
stringclasses
4 values
split
stringclasses
1 value
subcategories
stringclasses
1 value
lang
stringclasses
1 value
second_lang
stringclasses
1 value
coding_lang
stringclasses
1 value
notes
stringlengths
12
74
id
stringlengths
0
7
set_id
float64
300
344
variation_id
float64
1
1
دکتر احمدی یک جراح است. شغل آقای احمدی
[ "معلم است", "وکیل است", "قاضی است", "پزشک است" ]
3
D
test
Cannonical
pes_Arab
Dr Ahmadi is a Doctor. Occupation of Dr Ahmadi is
300
300
1
رنگ آسمان
[ "آبی است", "قرمز است", "سبز است", "زرد است" ]
0
A
test
Cannonical
pes_Arab
The color of the sky is
301
1
این خانه ۲٫۸۵۰٫۰۰۰٫۰۰۰ تومان است. قیمت این خانه
[ "۳٫۰۰۰٫۰۰۰٫۰۰۰ تومان است", "۲٫۰۵۰٫۰۰۰٫۰۰۰ تومان است", "۳٫۸۵۰٫۰۰۰٫۰۰۰ تومان است", "۲٫۸۵۰٫۰۰۰٫۰۰۰ تومان است" ]
3
D
test
Cannonical
pes_Arab
The price of this house is 2,850,000,000 Toman. The cost of this house is
302
1
امروز تاریخ ۱۴۰۳/۰۸/۱۵ است. امروز
[ "۱۴۰۳/۰۸/۱۶ است", "۱۴۰۲/۰۸/۱۵ است", "۱۴۰۳/۰۷/۱۵ است", "۱۴۰۳/۰۸/۱۵ است" ]
3
D
test
Cannonical
pes_Arab
Today's date is 15/8/1403 (in Persian Calendar). Today's date is
303
1
تعداد قاره های روی زمین
[ "۵ است", "۶ است", "۷ است", "۸ است" ]
2
C
test
Cannonical
pes_Arab
The number of continents on Earth is
304
1
پایتخت ایران
[ "تهران است", "مشهد است", "پاریس است", "بغداد است" ]
0
A
test
Cannonical
pes_Arab
The capital city of Iran is
305
1
هر هفته
[ "۵ روز است", "۶ روز است", "۷ روز است", "۸ روز است" ]
2
C
test
Cannonical
pes_Arab
The number of days in a week is
306
1
هر روز
[ "۲۰ ساعت است", "۲۵ ساعت است", "۲۴ ساعت است", "۳۰ ساعت است" ]
2
C
test
Cannonical
pes_Arab
The number of hours in a day is
307
1
تعداد پاهای یک گاو
[ "۴ است", "۲۰ است", "۳ است", "۵ است" ]
0
A
test
Cannonical
pes_Arab
The number of legs a cow has is
308
1
تعداد دقیقه های دو ساعت
[ "۱۲۰ است", "۱۰۰ است", "۱۴۰ است", "۹۰ است" ]
0
A
test
Cannonical
pes_Arab
The number of minutes in 2 hours is
309
1
تعداد ماه های یک سال
[ "۱۲ است", "۱۰ است", "۱۱ است", "۱۳ است" ]
0
A
test
Cannonical
pes_Arab
The number of months in a year is
310
1
تعداد ثانیه های یک دقیقه
[ "۵۰ است", "۱۰۰ است", "۳۰ است", "۶۰ است" ]
3
D
test
Cannonical
pes_Arab
The number of seconds in a minute is
311
1
تعداد ضلع های شش ضلعی
[ "۶ است", "۵ است", "۷ است", "۸ است" ]
0
A
test
Cannonical
pes_Arab
The number of sides a hexagon has is
312
1
تعداد ضلع های مثلث
[ "۳ است", "۲ است", "۴ است", "۵ است" ]
0
A
test
Cannonical
pes_Arab
The number of sides a triangle has is
313
1
در جمله «من در دیوار کار می‌کنم»، «دیوار» یک
[ "شخص است", "شئ است", "شهر است", "شرکت است" ]
3
D
test
Cannonical
pes_Arab
In \"I work at Divar\", Divar is a
314
1
در جمله «من در ایران خودرو کار می‌کنم»، «ایران خودرو» یک
[ "کشور است", "شئ است", "شرکت است", "شهر است" ]
2
C
test
Cannonical
pes_Arab
In \"I work at Iran Khodro\", Iran Khodro is a
315
1
در جمله «اسنپ به‌روزرسانی جدیدی منتشر کرد»، «اسنپ» یک
[ "شخص است", "صفت است", "تاریخ است", "شرکت است" ]
3
D
test
Cannonical
pes_Arab
In \"Snapp released a new update\", Snapp is a
316
1
در جمله «گربه روی فرش نشست»، فاعل
[ "نشست است", "فرش است", "گربه است", "روی است" ]
2
C
test
Cannonical
pes_Arab
In \"The cat sat on the mat\", the subject is
317
1
احساس «من عاشق این محصول شگفت‌انگیزم!»
[ "منفی است", "خنثی است", "مثبت است", "مختلط است" ]
2
C
test
Cannonical
pes_Arab
The feeling shown in \"I love this amazing product!\" is
318
1
احساس جمله ی «غذا عالی بود اما سرویس افتضاح بود.»
[ "مثبت است", "مختلط است", "منفی است", "خنثی است" ]
1
B
test
Cannonical
pes_Arab
The feeling shown in \"The food was great but the service was awful.\" is
319
1
احساس «سرویس خوب بود، چیز خاصی نبود.»
[ "مثبت است", "منفی است", "خنثی است", "مختلط است" ]
3
D
test
Cannonical
pes_Arab
The feeling shown in \"The service was okay, nothing special.\" is
320
1
احساس «این فیلم افتضاح و خسته‌کننده بود.»
[ "مثبت است", "خنثی است", "منفی است", "مختلط است" ]
2
C
test
Cannonical
pes_Arab
The feeling shown in \"This movie was terrible and boring.\" is
321
1
گازی که انسان‌ها برای زنده ماندن نیاز دارند
[ "اکسیژن است", "نیتروژن است", "دی اکسید کربن است", "هیدروژن است" ]
0
A
test
Cannonical
pes_Arab
The gas humans need to breathe to live is
322
1
حاصل ۱۰ درصد ۱۰۰
[ "۱۰ است", "۵ است", "۱۵ است", "۲۰ است" ]
0
A
test
Cannonical
pes_Arab
10% of 100 is
323
1
حاصل ۲۵ درصد ۸۰
[ "۱۵ است", "۲۰ است", "۲۵ است", "۳۰ است" ]
1
B
test
Cannonical
pes_Arab
25% of 80 is
324
1
حاصل ۵۰ درصد ۶۰
[ "۲۵ است", "۳۵ است", "۴۰ است", "۳۰ است" ]
3
D
test
Cannonical
pes_Arab
50% of 60 is
325
1
پایتخت چاد
[ "موندو است", "انجامنا است", "آبشه است", "نگاما است" ]
1
B
test
Cannonical
pes_Arab
Chad's capital is
326
1
پایتخت فرانسه
[ "لندن است", "پاریس است", "برلین است", "رم است" ]
1
B
test
Cannonical
pes_Arab
The capital of France is
327
1
پایتخت ژاپن
[ "کیوتو است", "اوزاکا است", "توکیو است", "هیروشیما است" ]
2
C
test
Cannonical
pes_Arab
The capital of Japan is
328
1
پایتخت ترکیه
[ "استانبول است", "آنکارا است", "ازمیر است", "بورسا است" ]
1
B
test
Cannonical
pes_Arab
The capital of Turkey is
329
1
فرمول شیمیایی آب
[ "CO2 است", "NaCl است", "O2 است", "H2O است" ]
3
D
test
Cannonical
pes_Arab
The chemical formula for water is
330
1
قصد این جمله «مغازه ساعت چند تعطیل می‌شود؟»
[ "خرید کردن است", "وقت ملاقات گرفتن است", "ثبت شکایت است", "اطلاعات گرفتن است" ]
3
D
test
Cannonical
pes_Arab
The intent in \"What time does the store close?\" is
331
1
بزرگترین پستاندار جهان
[ "فیل است", "زرافه است", "وال آبی است", "اسب آبی است" ]
2
C
test
Cannonical
pes_Arab
The largest mammal in the world is
332
1
واحد اندازه‌گیری دما در سیستم بین‌المللی
[ "کلوین است", "سلسیوس است", "فارنهایت است", "رانکین است" ]
0
A
test
Cannonical
pes_Arab
The unit of measurement for temperature in the International System is
333
1
ناسا آژانس فضایی
[ "روسیه است", "ایات متحده آمریکا است", "چین است", "ژاپن است" ]
1
B
test
Cannonical
pes_Arab
The country whose space agency is NASA is
334
1
در برزیل به زبان
[ "اسپانیایی صحبت می شود", "پرتغالی صحبت می شود", "فرانسوی صحبت می شود", "ایتالیایی صحبت می شود" ]
1
B
test
Cannonical
pes_Arab
The language spoken in Brazil is
335-1.0
335
1
نماد شیمیایی 'Fe' نماد فلز
[ "مس است", "زینک است", "آهن است", "آلومینیوم است" ]
2
C
test
Cannonical
pes_Arab
The metal with chemical symbol 'Fe' is
336-1.0
336
1
عضوی که در بدن انسان خون را پمپ می‌کند
[ "کبد است", "شش است", "کلیه است", "قلب است" ]
3
D
test
Cannonical
pes_Arab
The organ in the human body that pumps blood is
337-1.0
337
1
نزدیک ترین سیاره به خورشید در منظومه شمسی، سیاره ی
[ "زهره است", "مریخ است", "زمین است", "عطارد است" ]
3
D
test
Cannonical
pes_Arab
The planet closest to the Sun in our solar system is
338-1.0
338
1
بزرگترین سیاره ی منظومه شمسی
[ "زمین است", "مشتری است", "زحل است", "مریخ است" ]
1
B
test
Cannonical
pes_Arab
The largest planet in the Solar System is
339-1.0
339
1
فرآیندی که به گیاهان اجازه می‌دهد با استفاده از نور خورشید غذای خود را تولید کنند، فرآیند
[ "تنفس است", "فتوسنتز است", "هضم است", "تخمیر است" ]
1
B
test
Cannonical
pes_Arab
The process that allows plants to produce their own food using sunlight is
340-1.0
340
1
نویسنده ی نمایشنامه «رومئو و ژولیت»
[ "چارلز دیکنز است", "مارک توآین است", "ویلیام شکسپیر است", "جین آستین است" ]
2
C
test
Cannonical
pes_Arab
The author who wrote the play \"Romeo and Juliet\" is
341-1.0
341
1
زنبورها
[ "شیر تولید می کنند", "ابریشم تولید می کنند", "موم تولید می کنند", "عسل تولید می کنند" ]
3
D
test
Cannonical
pes_Arab
What bees produce is
342-1.0
342
1
گیاهان برای تولید غذا به
[ "نیتروژن نیاز دارند", "دی اکسید کربن نیاز دارند", "هیدروژن نیاز دارند", "هلیوم نیاز دارند" ]
1
B
test
Cannonical
pes_Arab
What plants need from the air to make food is
343-1.0
343
1
قصد شخص از جمله «می‌توانید لطفاً یک پرواز به پاریس رزرو کنید؟»
[ "اطلاعات گرفتن است", "شکایت کردن است", "رزرو کردن است", "کنسل کردن است" ]
2
C
test
Cannonical
pes_Arab
In \"Can you please book a flight to Paris?\", the person wants
344-1.0
344
1
TokSuite Logo

TokSuite Benchmark (Farsi Collection)

Dataset Description

This dataset is part of TokSuite, a comprehensive benchmark designed to measure how different tokenization strategies affect language model performance and robustness. This specific subset contains Farsi (Persian) language multiple-choice text completion questions with various real-world perturbations that test tokenizer robustness.

  • Curated by: R3 Research Team
  • Language(s): Farsi/Persian (fa)
  • License: MIT License

Dataset Summary

TokSuite addresses a fundamental challenge in language model research: understanding how tokenization choices impact model behavior in isolation. The Farsi subset specifically measures model performance on canonical questions and various perturbations including orthographic variations, diacritics, morphological challenges, and noise commonly encountered when processing Farsi text.

Key Features:

  • 45 canonical questions covering general knowledge, geography, science, and language understanding
  • Multiple perturbation types reflecting real-world text variations in Farsi
  • Parallel structure with TokSuite benchmark (available in English, Turkish, Italian, Chinese)
  • Native speaker curation ensuring linguistic authenticity

Supported Tasks

  • Multiple-Choice Question Answering: Text completion format with 4 answer choices
  • Tokenizer Robustness Evaluation: Measuring performance degradation under various text perturbations
  • Multilingual NLP Benchmarking: Evaluating language models on Farsi text understanding

Languages

The dataset contains text in Farsi (Persian) written in Arabic script (language code: pes_Arab / fa).

Dataset Structure

Data Instances

An example from the dataset:

{
  "question": "رنگ آسمان",
  "choices": ["آبی است", "قرمز است", "سبز است", "زرد است"],
  "answer": 0,
  "answer_label": "A",
  "split": "test",
  "subcategories": "Canonical",
  "lang": "pes_Arab",
  "second_lang": "The color of the sky is",
  "coding_lang": "",
  "notes": "The color of the sky is",
  "id": "301",
  "set_id": 301.0,
  "variation_id": 1.0
}

Data Fields

Field Type Description
question string The question text in Farsi (Persian Arabic script)
choices list[string] Four multiple-choice answer options in Farsi
answer int64 Index of the correct answer (0-3)
answer_label string Letter label of the correct answer (A, B, C, or D)
split string Dataset split identifier (all entries are "test")
subcategories string Perturbation category
lang string Language code (pes_Arab = Persian/Farsi in Arabic script)
second_lang string English translation or description of the question
coding_lang string Not applicable for this dataset (empty string)
notes string Additional context about the question or perturbation type
id string Unique question identifier
set_id float64 Question set grouping identifier (ranges from 300-344)
variation_id float64 Variation number within a question set

Dataset Creation

Curation Rationale

This dataset was created to:

  1. Systematically evaluate how different tokenization strategies handle Farsi text
  2. Measure robustness against real-world text perturbations specific to Farsi language
  3. Support research into tokenization's impact on language model behavior
  4. Provide standardized benchmarks for Farsi language models

The questions were designed to be straightforward with high baseline accuracy, allowing researchers to cleanly measure performance degradation when perturbations are applied.

Source Data

Data Collection and Processing

  • Canonical Questions: 40 baseline questions in English were created covering general knowledge topics
  • Translation: Native Farsi speakers translated questions to Persian
  • Perturbations: Each question underwent targeted perturbations designed to reflect morphological and orthographic characteristics of Farsi
  • Validation: Model-in-the-loop process ensured high baseline accuracy across 14 different tokenizers

Perturbation Categories

  1. Canonical The baseline/standard form of Farsi text without any modifications, used as the reference point for comparing other perturbations.

  2. Code Language Script Switching Mixing Farsi with English language (code-switching), randomly switching between Farsi and English words mid-sentence.

  3. Colloquial Using informal, conversational Farsi instead of formal written language, including slang, dialectal variations, and everyday speech patterns.

  4. Diacritics Presence/Absence Adding diacritical marks (vowel markings and other pronunciation indicators) that can be optionally included in Farsi text, which affects how words are read.

  5. Keyboard Proximity Errors Typos caused by hitting adjacent keys on a keyboard, simulating common typing mistakes where the wrong character is typed due to finger placement.

  6. Romanization Converting Farsi text to Finglish—writing Farsi words using English/Latin letters instead of Persian script.

  7. Word Reordering Changing the order of words in sentences, testing whether tokenizers can handle different syntactic arrangements.

  8. Word Spacing, Zero-Width Characters, Extra Space Manipulating spacing between words by adding extra spaces, removing spaces, or inserting invisible zero-width characters that affect how text is segmented.

Model Performance Comparison

model_name canonical arabic_keyboard_for_farsi code_language_script_switching colloquial dialects equivalent_expressions keyboard_proximity_errors number_romanization optional_diacritics romanization spelled_out word_spacing_zero-width_characters_extra_space
Aya 0.78 0.346 0.717 0.661 0.529 0.607 0.409 0.744 0.438 0.346 0.458 0.557
BLOOM 0.775 0.448 0.77 0.6 0.505 0.675 0.571 0.669 0.505 0.276 0.542 0.589
ByT5 0.769 0.478 0.719 0.591 0.531 0.616 0.527 0.568 0.446 0.28 0.337 0.476
Comma 0.79 0.471 0.66 0.652 0.523 0.66 0.503 0.617 0.457 0.449 0.291 0.484
GPT-2 0.78 0.569 0.672 0.739 0.545 0.66 0.616 0.498 0.436 0.298 0.449 0.573
GPT-4o 0.75 0.406 0.744 0.669 0.504 0.744 0.588 0.752 0.375 0.306 0.466 0.544
Gemma-2 0.75 0.375 0.569 0.688 0.475 0.712 0.544 0.44 0.431 0.425 0.446 0.5
Llama-3.2 0.743 0.355 0.688 0.587 0.55 0.675 0.499 0.907 0.291 0.304 0.429 0.46
Phi-3 0.82 0.48 0.675 0.593 0.501 0.63 0.542 0.555 0.493 0.328 0.469 0.593
Qwen-3 0.857 0.428 0.643 0.545 0.541 0.59 0.534 0.644 0.455 0.252 0.384 0.473
Tekken 0.842 0.481 0.743 0.594 0.51 0.697 0.561 0.853 0.449 0.318 0.522 0.547
TokenMonster 0.714 0.533 0.622 0.671 0.521 0.61 0.542 0.728 0.523 0.352 0.318 0.519
XGLM 0.757 0.499 0.669 0.558 0.522 0.706 0.539 0.644 0.462 0.297 0.415 0.559
mBERT 0.746 0.377 0.678 0.678 0.508 0.659 0.585 0.402 0.547 0.414 0.296 0.659

Who are the source data producers?

Native Farsi speakers curated and validated all questions and perturbations. The TokSuite research team at R3 designed the overall benchmark framework.

Annotations

Annotation process

Questions were manually created and translated by native speakers. Each perturbation was carefully designed to reflect authentic variations encountered in real-world Farsi text processing.

Who are the annotators?

Native Farsi speakers with expertise in linguistics and NLP, working as part of the TokSuite project.

Personal and Sensitive Information

The dataset contains only general knowledge questions and does not include any personal or sensitive information.

Considerations for Using the Data

Social Impact of Dataset

This dataset contributes to improving language technology for Farsi speakers by:

  • Enabling better understanding of tokenization challenges in Persian
  • Supporting development of more robust multilingual models
  • Providing standardized evaluation for Farsi NLP research

Discussion of Biases

  • Language variety: The dataset uses Modern Standard Persian and may not fully represent dialectal variations
  • Script focus: Only Arabic script is used; romanized versions are included as perturbations
  • Domain coverage: Questions focus on general knowledge and may not represent domain-specific language use
  • Question simplicity: Designed for high baseline accuracy, which may not reflect real-world task complexity

Other Known Limitations

  • Relatively small dataset size (designed for evaluation, not training)
  • Focus on multiple-choice format may not capture all aspects of language understanding
  • Perturbations are specific to Farsi's characteristics and findings may not generalize to all languages
  • Models evaluated were trained at ~1B parameters; results may differ at larger scales

Additional Information

Dataset Curators

The dataset was curated by the TokSuite research team at R3.

Licensing Information

MIT license

Citation Information

If you use this dataset in your research, please cite the TokSuite paper:

@inproceedings{toksuite2026,
  title={TokSuite: Measuring the Impact of Tokenizer Choice on Language Model Behavior},
  author={Altıntaş, Gül Sena and Ehghaghi, Malikeh and Lester, Brian and Liu, Fengyuan and Zhao, Wanru and Ciccone, Marco and Raffel, Colin},
  booktitle={Preprint.},
  year={2026},
  url={TBD}
}

Paper: TokSuite: Measuring the Impact of Tokenizer Choice on Language Model Behavior

Contributions

This dataset is part of TokSuite, which includes:

  • 14 language models with identical architectures but different tokenizers
  • Multilingual benchmark datasets (English, Turkish, Italian, Farsi, Chinese)
  • Comprehensive analysis of tokenization's impact on model behavior

Contact

For questions or issues related to this dataset, please refer to the TokSuite project or contact the authors through the paper submission system.


Part of the TokSuite Project

Understanding Tokenization's Role in Language Model Behavior

Downloads last month
75