Datasets:
File size: 25,992 Bytes
88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 3d97c3d 88dbfe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
"""WanFall: A Synthetic Activity Recognition Dataset
This dataset builder provides access to the WanFall synthetic activity recognition dataset,
featuring 12,000 videos with dense temporal annotations across 16 activity classes.
The dataset includes rich demographic and scene metadata, enabling research in fair and
robust activity recognition across diverse populations.
"""
import pandas as pd
import datasets
from datasets import BuilderConfig, GeneratorBasedBuilder, Features, Value, ClassLabel, SplitGenerator, Split, Sequence
import h5py
import tarfile
from pathlib import Path
# Dataset metadata
_CITATION = """\
TBD
"""
_DESCRIPTION = """\
WanFall is a large-scale synthetic activity recognition dataset designed for fall detection
and activities of daily living research. The dataset features computer-generated videos of
human actors performing various activities in controlled virtual environments.
**Key Features:**
- 12,000 video clips with dense temporal annotations
- 16 activity classes including falls, posture transitions, and static states
- 19,228 temporal segments with frame-level precision
- 5.0625 seconds per video clip (81 frames @ 16 fps)
- Rich demographic metadata (soft labels): age, gender, ethnicity, body type, height, skin tone
- Scene attributes: environment, camera angle, frame rate
- Multiple evaluation splits: random (80/10/10) and cross-demographic (age, ethnicity, BMI)
**Use Cases:**
- Fall detection research
- Activity recognition with temporal segmentation
- Bias and fairness analysis across demographics
- Cross-demographic generalization studies
"""
_HOMEPAGE = "https://huggingface.co/datasets/simplexsigil2/wanfall"
_LICENSE = "cc-by-nc-4.0"
# Activity class labels (16 classes)
_ACTIVITY_LABELS = [
"walk", # 0: Walking movement
"fall", # 1: Falling down action
"fallen", # 2: Person on ground after fall
"sit_down", # 3: Transitioning to sitting
"sitting", # 4: Stationary sitting posture
"lie_down", # 5: Intentionally lying down
"lying", # 6: Stationary lying posture
"stand_up", # 7: Rising, mostly to standing, but also from lying to sitting.
"standing", # 8: Stationary standing posture
"other", # 9: Unclassified activities
"kneel_down", # 10: Transitioning to kneeling
"kneeling", # 11: Stationary kneeling posture
"squat_down", # 12: Transitioning to squatting
"squatting", # 13: Stationary squatting posture
"crawl", # 14: Crawling movement
"jump", # 15: Jumping action
]
# Demographic and scene metadata categories
_AGE_GROUPS = ["toddlers_1_4", "children_5_12", "teenagers_13_17",
"young_adults_18_34", "middle_aged_35_64", "elderly_65_plus"]
_GENDERS = ["male", "female"]
_SKIN_TONES = [f"mst{i}" for i in range(1, 11)] # Monk Skin Tone scale (1-10)
_ETHNICITIES = ["white", "black", "asian", "hispanic_latino", "aian", "nhpi", "mena"]
_BMI_BANDS = ["underweight", "normal", "overweight", "obese"]
_HEIGHT_BANDS = ["short", "avg", "tall"]
_ENVIRONMENTS = ["indoor", "outdoor"]
_CAMERA_ELEVATIONS = ["eye", "low", "high", "top"]
_CAMERA_AZIMUTHS = ["front", "rear", "left", "right"]
_CAMERA_DISTANCES = ["medium", "far"]
_CAMERA_SHOTS = ["static_wide", "static_medium_wide"]
_SPEEDS = ["24fps_rt", "25fps_rt", "30fps_rt", "std_rt"]
class WanFallConfig(BuilderConfig):
"""BuilderConfig for WanFall dataset.
Args:
split_type: Type of data to load ("labels", "metadata", "framewise", or split name like "random")
paths_only: If True, only return video paths for split configs (no label merging)
framewise: If True, load frame-wise labels from HDF5 files (81 labels per video)
**kwargs: Keyword arguments forwarded to super.
"""
def __init__(self, split_type="labels", paths_only=False, framewise=False, **kwargs):
super().__init__(**kwargs)
self.split_type = split_type
self.paths_only = paths_only
self.framewise = framewise
class WanFall(GeneratorBasedBuilder):
"""WanFall synthetic activity recognition dataset builder."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = WanFallConfig
BUILDER_CONFIGS = [
WanFallConfig(
name="labels",
version=VERSION,
description="All temporal segment labels with metadata (19,228 segments)",
split_type="labels",
),
WanFallConfig(
name="metadata",
version=VERSION,
description="Video-level metadata without temporal segments (12,000 videos)",
split_type="metadata",
),
WanFallConfig(
name="random",
version=VERSION,
description="Random 80/10/10 train/val/test split",
split_type="random",
),
WanFallConfig(
name="cross_age",
version=VERSION,
description="Cross-age evaluation: train on young/middle-aged, test on children/elderly",
split_type="cross_age",
),
WanFallConfig(
name="cross_ethnicity",
version=VERSION,
description="Cross-ethnicity evaluation: train on white/asian/hispanic, test on black/mena/nhpi",
split_type="cross_ethnicity",
),
WanFallConfig(
name="cross_bmi",
version=VERSION,
description="Cross-BMI evaluation: train on normal/underweight, test on obese",
split_type="cross_bmi",
),
WanFallConfig(
name="framewise",
version=VERSION,
description="Frame-wise labels for all videos (81 labels per video, one per frame)",
split_type="framewise",
framewise=True,
),
]
DEFAULT_CONFIG_NAME = "random"
def _info(self):
"""Specify dataset metadata and features schema."""
# Define features based on config type
if self.config.split_type == "metadata":
features = self._get_metadata_features()
elif self.config.framewise:
features = self._get_framewise_features()
elif self.config.paths_only:
features = self._get_paths_only_features()
else:
features = self._get_full_features()
# Create id2label and label2id mappings
id2label = {i: label for i, label in enumerate(_ACTIVITY_LABELS)}
label2id = {label: i for i, label in enumerate(_ACTIVITY_LABELS)}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
# Note: Label mappings are accessible via dataset.info.features["label"].names
)
def _get_full_features(self):
"""Complete feature schema with all 19 fields (temporal segments + metadata)."""
return Features({
# Core identity and temporal fields
"path": Value("string"),
"label": ClassLabel(num_classes=16, names=_ACTIVITY_LABELS),
"start": Value("float32"),
"end": Value("float32"),
"subject": Value("int32"), # -1 for WanFall (no subject tracking)
"cam": Value("int32"), # -1 for WanFall (single view)
"dataset": Value("string"), # "wanfall" constant
# Demographic metadata
"age_group": ClassLabel(num_classes=6, names=_AGE_GROUPS),
"gender_presentation": ClassLabel(num_classes=2, names=_GENDERS),
"monk_skin_tone": ClassLabel(num_classes=10, names=_SKIN_TONES),
"race_ethnicity_omb": ClassLabel(num_classes=7, names=_ETHNICITIES),
"bmi_band": ClassLabel(num_classes=4, names=_BMI_BANDS),
"height_band": ClassLabel(num_classes=3, names=_HEIGHT_BANDS),
# Scene metadata
"environment_category": ClassLabel(num_classes=2, names=_ENVIRONMENTS),
"camera_shot": ClassLabel(num_classes=2, names=_CAMERA_SHOTS),
"speed": ClassLabel(num_classes=4, names=_SPEEDS),
"camera_elevation": ClassLabel(num_classes=4, names=_CAMERA_ELEVATIONS),
"camera_azimuth": ClassLabel(num_classes=4, names=_CAMERA_AZIMUTHS),
"camera_distance": ClassLabel(num_classes=2, names=_CAMERA_DISTANCES),
})
def _get_metadata_features(self):
"""Feature schema for metadata config (video-level, no temporal segments)."""
return Features({
# Core identity (no temporal fields)
"path": Value("string"),
"dataset": Value("string"),
# Demographic metadata
"age_group": ClassLabel(num_classes=6, names=_AGE_GROUPS),
"gender_presentation": ClassLabel(num_classes=2, names=_GENDERS),
"monk_skin_tone": ClassLabel(num_classes=10, names=_SKIN_TONES),
"race_ethnicity_omb": ClassLabel(num_classes=7, names=_ETHNICITIES),
"bmi_band": ClassLabel(num_classes=4, names=_BMI_BANDS),
"height_band": ClassLabel(num_classes=3, names=_HEIGHT_BANDS),
# Scene metadata
"environment_category": ClassLabel(num_classes=2, names=_ENVIRONMENTS),
"camera_shot": ClassLabel(num_classes=2, names=_CAMERA_SHOTS),
"speed": ClassLabel(num_classes=4, names=_SPEEDS),
"camera_elevation": ClassLabel(num_classes=4, names=_CAMERA_ELEVATIONS),
"camera_azimuth": ClassLabel(num_classes=4, names=_CAMERA_AZIMUTHS),
"camera_distance": ClassLabel(num_classes=2, names=_CAMERA_DISTANCES),
})
def _get_paths_only_features(self):
"""Minimal feature schema for paths-only mode."""
return Features({
"path": Value("string"),
})
def _get_framewise_features(self):
"""Feature schema for frame-wise labels (81 labels per video)."""
return Features({
# Core identity
"path": Value("string"),
"dataset": Value("string"),
# Frame-wise labels (81 frames @ 16fps = 5.0625 seconds)
"frame_labels": Sequence(ClassLabel(num_classes=16, names=_ACTIVITY_LABELS), length=81),
# Demographic metadata (same as metadata config)
"age_group": ClassLabel(num_classes=6, names=_AGE_GROUPS),
"gender_presentation": ClassLabel(num_classes=2, names=_GENDERS),
"monk_skin_tone": ClassLabel(num_classes=10, names=_SKIN_TONES),
"race_ethnicity_omb": ClassLabel(num_classes=7, names=_ETHNICITIES),
"bmi_band": ClassLabel(num_classes=4, names=_BMI_BANDS),
"height_band": ClassLabel(num_classes=3, names=_HEIGHT_BANDS),
# Scene metadata
"environment_category": ClassLabel(num_classes=2, names=_ENVIRONMENTS),
"camera_shot": ClassLabel(num_classes=2, names=_CAMERA_SHOTS),
"speed": ClassLabel(num_classes=4, names=_SPEEDS),
"camera_elevation": ClassLabel(num_classes=4, names=_CAMERA_ELEVATIONS),
"camera_azimuth": ClassLabel(num_classes=4, names=_CAMERA_AZIMUTHS),
"camera_distance": ClassLabel(num_classes=2, names=_CAMERA_DISTANCES),
})
def _split_generators(self, dl_manager):
"""Define data splits and their source files."""
# Handle framewise config - needs to download and extract HDF5 files
if self.config.framewise:
# Download the frame-wise labels archive
archive_path = dl_manager.download_and_extract("data_files/frame_wise_labels.tar.zst")
# If split_type is "framewise", return all videos in one split
if self.config.split_type == "framewise":
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"hdf5_dir": archive_path,
"metadata_path": "videos/metadata.csv",
"split_file": None,
},
),
]
# Otherwise, use split files (random, cross_age, etc.)
else:
split_dir = f"splits/{self.config.split_type}"
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"hdf5_dir": archive_path,
"metadata_path": "videos/metadata.csv",
"split_file": f"{split_dir}/train.csv",
},
),
SplitGenerator(
name=Split.VALIDATION,
gen_kwargs={
"hdf5_dir": archive_path,
"metadata_path": "videos/metadata.csv",
"split_file": f"{split_dir}/val.csv",
},
),
SplitGenerator(
name=Split.TEST,
gen_kwargs={
"hdf5_dir": archive_path,
"metadata_path": "videos/metadata.csv",
"split_file": f"{split_dir}/test.csv",
},
),
]
# Handle different config types
if self.config.split_type == "labels":
# Labels config: single split with all temporal segments
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"filepath": "labels/wanfall.csv",
"split_name": "labels",
},
),
]
elif self.config.split_type == "metadata":
# Metadata config: single split with video-level metadata
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"filepath": "videos/metadata.csv",
"split_name": "metadata",
},
),
]
else:
# Split configs (random, cross_age, cross_ethnicity, cross_bmi)
split_dir = f"splits/{self.config.split_type}"
# If paths_only mode, just load split files
# Otherwise, we need both split files and labels for merging
base_kwargs = {
"split_dir": split_dir,
"labels_path": "labels/wanfall.csv" if not self.config.paths_only else None,
}
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
**base_kwargs,
"split_file": f"{split_dir}/train.csv",
"split_name": "train",
},
),
SplitGenerator(
name=Split.VALIDATION,
gen_kwargs={
**base_kwargs,
"split_file": f"{split_dir}/val.csv",
"split_name": "val",
},
),
SplitGenerator(
name=Split.TEST,
gen_kwargs={
**base_kwargs,
"split_file": f"{split_dir}/test.csv",
"split_name": "test",
},
),
]
def _generate_examples(self, filepath=None, split_file=None, labels_path=None,
split_name=None, split_dir=None, hdf5_dir=None, metadata_path=None):
"""Generate examples from CSV files or HDF5 files.
Args:
filepath: Direct path to CSV file (for labels/metadata configs)
split_file: Path to split file containing video paths (for split configs)
labels_path: Path to labels file for merging (for split configs with full data)
split_name: Name of the split being generated
split_dir: Directory containing split files
hdf5_dir: Directory containing extracted HDF5 files (for framewise config)
metadata_path: Path to metadata CSV (for framewise config)
"""
# Case 0: Frame-wise labels from HDF5 files
if hdf5_dir is not None:
# Load metadata
metadata_df = pd.read_csv(metadata_path)
# If split_file is provided, load the video paths for this split
valid_paths = None
if split_file is not None:
split_df = pd.read_csv(split_file)
valid_paths = set(split_df['path'].tolist())
# hdf5_dir might be a tar file (if zst extraction only decompressed to tar)
# Check if it's a tar file and handle appropriately
hdf5_path = Path(hdf5_dir)
if hdf5_path.is_file() and (hdf5_path.suffix == '.tar' or tarfile.is_tarfile(str(hdf5_path))):
# It's a tar file - iterate through it directly
idx = 0
with tarfile.open(hdf5_path, 'r') as tar:
for member in tar.getmembers():
if not member.name.endswith('.h5'):
continue
# Extract path from tar member name
# e.g., "./lie_down/lie_down_yo_076.h5" or "lie_down/lie_down_yo_076.h5"
video_path = member.name.lstrip('./').replace('.h5', '')
# Skip if not in this split
if valid_paths is not None and video_path not in valid_paths:
continue
try:
# Extract H5 file to memory
h5_file = tar.extractfile(member)
if h5_file is None:
continue
# h5py can't read from file-like object directly, need temp file
import tempfile
with tempfile.NamedTemporaryFile(suffix='.h5', delete=True) as tmp:
tmp.write(h5_file.read())
tmp.flush()
with h5py.File(tmp.name, 'r') as f:
frame_labels = f['label_indices'][:].tolist()
# Get metadata for this video
video_metadata = metadata_df[metadata_df['path'] == video_path]
if len(video_metadata) == 0:
continue
video_meta = video_metadata.iloc[0]
# Create example
example = {
"path": video_path,
"dataset": "wanfall",
"frame_labels": frame_labels,
}
# Add metadata fields
metadata_fields = [
"age_group", "gender_presentation", "monk_skin_tone",
"race_ethnicity_omb", "bmi_band", "height_band",
"environment_category", "camera_shot", "speed",
"camera_elevation", "camera_azimuth", "camera_distance"
]
for field in metadata_fields:
if field in video_meta and pd.notna(video_meta[field]):
example[field] = str(video_meta[field])
yield idx, example
idx += 1
except Exception as e:
print(f"Warning: Failed to process {member.name}: {e}")
continue
else:
# It's a directory - glob for H5 files
hdf5_files = sorted(hdf5_path.glob("**/*.h5"))
idx = 0
for h5_file in hdf5_files:
relative_path = h5_file.relative_to(hdf5_path)
video_path = str(relative_path.with_suffix(''))
# Skip if not in this split
if valid_paths is not None and video_path not in valid_paths:
continue
try:
with h5py.File(h5_file, 'r') as f:
frame_labels = f['label_indices'][:].tolist()
video_metadata = metadata_df[metadata_df['path'] == video_path]
if len(video_metadata) == 0:
continue
video_meta = video_metadata.iloc[0]
example = {
"path": video_path,
"dataset": "wanfall",
"frame_labels": frame_labels,
}
metadata_fields = [
"age_group", "gender_presentation", "monk_skin_tone",
"race_ethnicity_omb", "bmi_band", "height_band",
"environment_category", "camera_shot", "speed",
"camera_elevation", "camera_azimuth", "camera_distance"
]
for field in metadata_fields:
if field in video_meta and pd.notna(video_meta[field]):
example[field] = str(video_meta[field])
yield idx, example
idx += 1
except Exception as e:
print(f"Warning: Failed to process {h5_file}: {e}")
continue
return
# Case 1: Direct file loading (labels or metadata config)
if filepath is not None:
df = pd.read_csv(filepath)
# For metadata config, filter out temporal segment columns if they exist
if self.config.split_type == "metadata":
# Keep only metadata columns (exclude label, start, end, subject, cam if present)
metadata_cols = ["path", "age_group", "gender_presentation",
"monk_skin_tone", "race_ethnicity_omb", "bmi_band", "height_band",
"environment_category", "camera_shot", "speed",
"camera_elevation", "camera_azimuth", "camera_distance"]
# Only keep columns that exist in the dataframe
available_cols = [col for col in metadata_cols if col in df.columns]
df = df[available_cols].drop_duplicates(subset=["path"]).reset_index(drop=True)
# Add dataset column manually
df["dataset"] = "wanfall"
# Yield examples
for idx, row in df.iterrows():
yield idx, self._row_to_example(row)
# Case 2: Split file loading with optional merging
elif split_file is not None:
# Load split paths
split_df = pd.read_csv(split_file)
# Paths-only mode: just return paths
if self.config.paths_only or labels_path is None:
for idx, row in split_df.iterrows():
yield idx, {"path": row["path"]}
# Full mode: merge with labels
else:
# Load all labels
labels_df = pd.read_csv(labels_path)
# Merge split paths with labels
merged_df = pd.merge(split_df, labels_df, on="path", how="left")
# Yield examples
for idx, row in merged_df.iterrows():
yield idx, self._row_to_example(row)
def _row_to_example(self, row):
"""Convert a DataFrame row to an example dictionary with proper types.
Args:
row: pandas Series representing one row
Returns:
Dictionary with properly typed values for the features schema
"""
example = {}
# Always include path
example["path"] = str(row["path"])
# Include fields based on what's available in the row
if "label" in row and pd.notna(row["label"]):
example["label"] = int(row["label"])
if "start" in row and pd.notna(row["start"]):
example["start"] = float(row["start"])
if "end" in row and pd.notna(row["end"]):
example["end"] = float(row["end"])
if "subject" in row and pd.notna(row["subject"]):
example["subject"] = int(row["subject"])
if "cam" in row and pd.notna(row["cam"]):
example["cam"] = int(row["cam"])
if "dataset" in row and pd.notna(row["dataset"]):
example["dataset"] = str(row["dataset"])
# Demographic metadata (categorical - keep as strings, ClassLabel handles conversion)
demographic_fields = [
"age_group", "gender_presentation", "monk_skin_tone",
"race_ethnicity_omb", "bmi_band", "height_band"
]
for field in demographic_fields:
if field in row and pd.notna(row[field]):
example[field] = str(row[field])
# Scene metadata (categorical)
scene_fields = [
"environment_category", "camera_shot", "speed",
"camera_elevation", "camera_azimuth", "camera_distance"
]
for field in scene_fields:
if field in row and pd.notna(row[field]):
example[field] = str(row[field])
return example
|