hamzabouajila commited on
Commit
b1c50f8
·
verified ·
1 Parent(s): 5ffb8e5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +138 -0
README.md CHANGED
@@ -23,4 +23,142 @@ configs:
23
  path: data/train-*
24
  - split: test
25
  path: data/test-*
 
 
 
 
 
 
 
 
 
 
 
 
26
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  path: data/train-*
24
  - split: test
25
  path: data/test-*
26
+ license: lgpl-3.0
27
+ task_categories:
28
+ - text-classification
29
+ language:
30
+ - ar
31
+ tags:
32
+ - arabic
33
+ - tunisian
34
+ - sentiment_analysis
35
+ pretty_name: Tunisian Sentiment Analysis Corpus (TSAC)
36
+ size_categories:
37
+ - 10K<n<100K
38
  ---
39
+
40
+ # Tunisian Sentiment Analysis Corpus (TSAC)
41
+
42
+ The **Tunisian Sentiment Analysis Corpus (TSAC)** is a collection of approximately **17,000 Tunisian Arabic user comments** manually annotated for **sentiment polarity** (positive or negative).
43
+ It was collected from Facebook comments written on the official pages of Tunisian radio and TV stations between **January 2015 and June 2016**.
44
+
45
+ This cleaned and Hugging Face–ready version of TSAC provides train/test splits in a simple format compatible with any modern NLP framework.
46
+
47
+ ---
48
+
49
+ ## Dataset Details
50
+
51
+ ### Dataset Description
52
+
53
+ - **Name:** Tunisian Sentiment Analysis Corpus (TSAC)
54
+ - **Curated by:** Salima Medhaffar, Fethi Bougares, Yannick Estève, and Lamia Hadrich-Belguith
55
+ - **Language:** Tunisian Arabic (Arabic script)
56
+ - **License:** Apache License 2.0
57
+ - **Original Repository:** [https://github.com/fbougares/TSAC](https://github.com/fbougares/TSAC)
58
+ - **Hugging Face Maintainer:** [tunis-ai](https://huggingface.co/tunis-ai)
59
+
60
+ ### Dataset Sources
61
+
62
+ - **Data collected from:** Official Facebook pages of
63
+ - Mosaique FM
64
+ - Jawhara FM
65
+ - Shems FM
66
+ - Hiwar Ettounsi TV
67
+ - Nessma TV
68
+ - **Timeframe:** January 2015 – June 2016
69
+ - **Paper:** [Medhaffar et al., 2017 — *Sentiment Analysis of Tunisian Dialects: Linguistic Resources and Experiments*](https://aclanthology.org/W17-1307/)
70
+
71
+ ---
72
+
73
+ ## Uses
74
+
75
+ ### Direct Use
76
+
77
+ The dataset is suitable for:
78
+ - Sentiment analysis in Tunisian Arabic
79
+ - Dialectal Arabic language modeling
80
+ - Evaluation of cross-dialectal or multilingual sentiment models
81
+
82
+ ### Out-of-Scope Use
83
+
84
+ - Not suitable for general Modern Standard Arabic (MSA) tasks.
85
+ - Not recommended for topic classification or sarcasm detection without adaptation.
86
+
87
+ ---
88
+
89
+ ## Dataset Structure
90
+
91
+ ### Data Fields
92
+
93
+ | Field | Type | Description |
94
+ |-------|------|-------------|
95
+ | `sentence` | string | User comment written in Tunisian Arabic |
96
+ | `label` | int | Sentiment label (1 = positive, 0 = negative) |
97
+
98
+ ### Splits
99
+
100
+ | Split | # Examples |
101
+ |--------|-------------|
102
+ | Train | 13,669 |
103
+ | Test | 3,400 |
104
+
105
+ Splits were created using a stratified partition to maintain class balance.
106
+
107
+ ---
108
+
109
+ ## Dataset Creation
110
+
111
+ ### Curation Rationale
112
+
113
+ The dataset was built to support research in sentiment analysis for **Tunisian Arabic**, a dialect that differs significantly from Modern Standard Arabic and lacks large-scale annotated resources.
114
+
115
+ ### Data Collection and Processing
116
+
117
+ Comments were collected from Facebook public pages using web scraping tools, manually filtered for relevance, and annotated by native Tunisian speakers into two polarity classes: **positive** and **negative**.
118
+
119
+ Preprocessing steps include:
120
+ - Removing URLs, emojis, and metadata
121
+ - Normalizing Arabic characters
122
+ - Deduplicating sentences
123
+
124
+ ### Source Data Producers
125
+
126
+ Public Facebook users posting on the mentioned Tunisian media pages between 2015 and 2016.
127
+
128
+ ### Annotations
129
+
130
+ - **Annotation Type:** Binary sentiment classification (positive/negative)
131
+ - **Annotators:** Native Tunisian Arabic speakers
132
+ - **Validation:** Manual cross-checking and agreement verification by linguists
133
+
134
+ ### Personal and Sensitive Information
135
+
136
+ Comments are publicly available and were anonymized by removing any identifiable information (e.g., usernames, mentions).
137
+
138
+ ---
139
+
140
+ ## Bias, Risks, and Limitations
141
+
142
+ The dataset reflects opinions expressed on public Facebook pages and may include demographic, temporal, or topical biases.
143
+ It should not be used to infer general population sentiment or to train systems that make sensitive decisions about individuals.
144
+
145
+ ---
146
+
147
+ ## Citation
148
+
149
+ If you use this dataset, please cite the following paper:
150
+
151
+ **BibTeX:**
152
+ ```bibtex
153
+ @inproceedings{medhaffar-etal-2017-sentiment,
154
+ title = "Sentiment Analysis of {T}unisian Dialects: Linguistic Resources and Experiments",
155
+ author = "Medhaffar, Salima and Bougares, Fethi and Estève, Yannick and Hadrich-Belguith, Lamia",
156
+ booktitle = "Proceedings of the Third Arabic Natural Language Processing Workshop",
157
+ month = apr,
158
+ year = "2017",
159
+ address = "Valencia, Spain",
160
+ publisher = "Association for Computational Linguistics",
161
+ url = "https://aclanthology.org/W17-1307/",
162
+ pages = "55--61",
163
+ doi = "10.18653/v1/W17-1307"
164
+ }