File size: 6,289 Bytes
6759906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# CodeReality-1T Evaluation Benchmarks

This directory contains demonstration benchmark scripts for evaluating models on the CodeReality-1T dataset.

## Available Benchmarks

### 1. License Detection Benchmark
**File**: `license_detection_benchmark.py`

**Purpose**: Evaluates automated license classification systems on deliberately noisy data.

**Features**:
- Rule-based feature extraction from repository content
- Simple classification model for demonstration
- Performance metrics on license detection accuracy
- Analysis of license distribution patterns

**Usage**:
```bash
cd /path/to/codereality-1t/eval/benchmarks
python3 license_detection_benchmark.py
```

**Expected Results**:
- Low accuracy due to deliberately noisy dataset (0% license detection by design)
- Demonstrates robustness testing for license detection systems
- Outputs detailed distribution analysis

### 2. Code Completion Benchmark
**File**: `code_completion_benchmark.py`

**Purpose**: Evaluates code completion models using Pass@k metrics on real-world noisy code.

**Features**:
- Function extraction from Python, JavaScript, Java files
- Simple rule-based completion model for demonstration
- Pass@1, Pass@3, Pass@5 metric calculation
- Multi-language support with language-specific patterns

**Usage**:
```bash
cd /path/to/codereality-1t/eval/benchmarks
python3 code_completion_benchmark.py
```

**Expected Results**:
- Baseline performance metrics for comparison
- Language distribution analysis
- Quality scoring of completions

## Benchmark Characteristics

### Dataset Integration
- **Data Source**: Loads from `/mnt/z/CodeReality_Final/unified_dataset` by default
- **Sampling**: Uses random sampling for performance (configurable)
- **Formats**: Handles JSONL repository format from CodeReality-1T

### Evaluation Philosophy
- **Deliberately Noisy**: Tests model robustness on real-world messy data
- **Baseline Metrics**: Provides simple baselines for comparison (not production-ready)
- **Reproducible**: Deterministic evaluation with random seed control
- **Research Focus**: Results show challenges of noisy data, not competitive benchmarks

### Extensibility
- **Modular Design**: Easy to extend with new benchmarks
- **Configurable**: Sample sizes and evaluation criteria can be adjusted
- **Multiple Languages**: Framework supports cross-language evaluation

## Configuration

### Data Path Configuration
Update the `data_dir` variable in each script to point to your CodeReality-1T dataset:

```python
data_dir = "/path/to/your/codereality-1t/unified_dataset"
```

### Sample Size Adjustment
Modify sample sizes for performance tuning:

```python
sample_size = 500  # Adjust based on computational resources
```

## Output Files

Each benchmark generates JSON results files:
- `license_detection_results.json`
- `code_completion_results.json`

These contain detailed metrics and can be used for comparative analysis.

### Sample Results
Example results are available in `../results/`:
- `license_detection_sample_results.json` - Baseline license detection performance
- `code_completion_sample_results.json` - Baseline code completion metrics

These demonstrate expected performance on CodeReality-1T's deliberately noisy data.

## Requirements

### Python Dependencies
```bash
pip install json os re random typing collections
```

### System Requirements
- **Memory**: Minimum 4GB RAM for default sample sizes
- **Storage**: Access to CodeReality-1T dataset (3TB)
- **Compute**: Single-core sufficient for demonstration scripts

## Extending the Benchmarks

### Adding New Tasks
1. Create new Python file following naming convention: `{task}_benchmark.py`
2. Implement standard evaluation interface:
   ```python
   def load_dataset_sample(data_dir, sample_size)
   def run_benchmark(repositories)
   def print_benchmark_results(results)
   ```
3. Add task-specific evaluation metrics

### Supported Tasks
Current benchmarks cover:
- **License Detection**: Classification and compliance
- **Code Completion**: Generation and functional correctness

**Framework Scaffolds (PLANNED - Implementation Needed)**:
- [`bug_detection_benchmark.py`](bug_detection_benchmark.py) - Bug detection on commit pairs (scaffold only)
- [`cross_language_translation_benchmark.py`](cross_language_translation_benchmark.py) - Code translation across languages (scaffold only)

**Future Planned Benchmarks - Roadmap**:
- **v1.1.0 (Q1 2025)**: Complete bug detection and cross-language translation implementations
- **v1.2.0 (Q2 2025)**: Repository classification and domain detection benchmarks
- **v1.3.0 (Q3 2025)**: Build system analysis and validation frameworks
- **v2.0.0 (Q4 2025)**: Commit message generation and issue-to-code alignment benchmarks

**Community Priority**: Framework scaffolds ready for community implementation!

## Performance Notes

### Computational Complexity
- **License Detection**: O(n) where n = repository count
- **Code Completion**: O(n*m) where m = average functions per repository

### Optimization Tips
1. **Sampling**: Reduce sample_size for faster execution
2. **Filtering**: Pre-filter repositories by criteria
3. **Parallelization**: Use multiprocessing for large-scale evaluation
4. **Caching**: Cache extracted features for repeated runs

## Research Applications

### Model Development
- **Robustness Testing**: Test models on noisy, real-world data
- **Baseline Comparison**: Compare against simple rule-based systems
- **Cross-domain Evaluation**: Test generalization across domains

### Data Science Research
- **Curation Methods**: Develop better filtering techniques
- **Quality Metrics**: Research automated quality assessment
- **Bias Analysis**: Study representation bias in large datasets

## Citation

When using these benchmarks in research, please cite the CodeReality-1T dataset:

```bibtex
@misc{codereality2025,
  title={CodeReality-1T: A Large-Scale Deliberately Noisy Dataset for Robust Code Understanding},
  author={Vincenzo Gallo},
  year={2025},
  publisher={Hugging Face},
  howpublished={\\url{https://huggingface.co/vinsblack}},
  note={Version 1.0.0}
}
```

## Support

- **Issues**: https://github.com/vinsguru/codereality-1t/issues
- **Contact**: [email protected]
- **Documentation**: See main dataset README and documentation