|
|
|
|
|
""" |
|
|
License Detection Benchmark for CodeReality-1T Dataset |
|
|
Evaluates automated license classification systems |
|
|
""" |
|
|
|
|
|
import json |
|
|
import os |
|
|
from typing import Dict, List, Tuple |
|
|
from collections import defaultdict |
|
|
import random |
|
|
|
|
|
def load_dataset_sample(data_dir: str, sample_size: int = 1000) -> List[Dict]: |
|
|
"""Load random sample of repositories from dataset.""" |
|
|
print(f"🔍 Loading sample of {sample_size} repositories...") |
|
|
|
|
|
repositories = [] |
|
|
|
|
|
|
|
|
files = [f for f in os.listdir(data_dir) if f.endswith('.jsonl')] |
|
|
random.shuffle(files) |
|
|
|
|
|
for filename in files[:10]: |
|
|
file_path = os.path.join(data_dir, filename) |
|
|
try: |
|
|
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: |
|
|
for line in f: |
|
|
if len(repositories) >= sample_size: |
|
|
break |
|
|
try: |
|
|
repo_data = json.loads(line) |
|
|
repositories.append(repo_data) |
|
|
except json.JSONDecodeError: |
|
|
continue |
|
|
except Exception as e: |
|
|
print(f"⚠️ Error reading {filename}: {e}") |
|
|
continue |
|
|
|
|
|
if len(repositories) >= sample_size: |
|
|
break |
|
|
|
|
|
print(f"✅ Loaded {len(repositories)} repositories") |
|
|
return repositories |
|
|
|
|
|
def extract_license_features(repo: Dict) -> Dict: |
|
|
"""Extract features that could indicate license presence.""" |
|
|
features = { |
|
|
'has_license_file': False, |
|
|
'has_readme': False, |
|
|
'license_keywords_count': 0, |
|
|
'copyright_mentions': 0, |
|
|
'file_count': 0, |
|
|
'detected_license': repo.get('license', 'Unknown') |
|
|
} |
|
|
|
|
|
files = repo.get('files', []) |
|
|
features['file_count'] = len(files) |
|
|
|
|
|
license_keywords = ['license', 'mit', 'apache', 'gpl', 'bsd', 'copyright'] |
|
|
|
|
|
for file_obj in files: |
|
|
if isinstance(file_obj, dict): |
|
|
file_path = file_obj.get('path', '').lower() |
|
|
content = file_obj.get('content', '').lower() |
|
|
|
|
|
|
|
|
if any(keyword in file_path for keyword in ['license', 'copying', 'legal']): |
|
|
features['has_license_file'] = True |
|
|
|
|
|
|
|
|
if 'readme' in file_path: |
|
|
features['has_readme'] = True |
|
|
|
|
|
|
|
|
for keyword in license_keywords: |
|
|
features['license_keywords_count'] += content.count(keyword) |
|
|
|
|
|
|
|
|
features['copyright_mentions'] += content.count('copyright') |
|
|
|
|
|
return features |
|
|
|
|
|
def simple_license_classifier(features: Dict) -> str: |
|
|
"""Simple rule-based license classifier for demonstration.""" |
|
|
|
|
|
|
|
|
if features['has_license_file']: |
|
|
if features['license_keywords_count'] > 10: |
|
|
return 'MIT' |
|
|
elif features['copyright_mentions'] > 5: |
|
|
return 'Apache-2.0' |
|
|
else: |
|
|
return 'GPL-3.0' |
|
|
elif features['has_readme'] and features['license_keywords_count'] > 3: |
|
|
return 'MIT' |
|
|
elif features['file_count'] > 50 and features['copyright_mentions'] > 2: |
|
|
return 'Apache-2.0' |
|
|
else: |
|
|
return 'Unknown' |
|
|
|
|
|
def evaluate_license_detection(repositories: List[Dict]) -> Dict: |
|
|
"""Evaluate license detection performance.""" |
|
|
print("🧮 Evaluating license detection...") |
|
|
|
|
|
results = { |
|
|
'total_repos': len(repositories), |
|
|
'predictions': [], |
|
|
'ground_truth': [], |
|
|
'accuracy': 0.0, |
|
|
'license_distribution': defaultdict(int), |
|
|
'prediction_distribution': defaultdict(int) |
|
|
} |
|
|
|
|
|
for repo in repositories: |
|
|
features = extract_license_features(repo) |
|
|
predicted_license = simple_license_classifier(features) |
|
|
actual_license = features['detected_license'] |
|
|
|
|
|
results['predictions'].append(predicted_license) |
|
|
results['ground_truth'].append(actual_license) |
|
|
results['license_distribution'][actual_license] += 1 |
|
|
results['prediction_distribution'][predicted_license] += 1 |
|
|
|
|
|
|
|
|
correct = sum(1 for p, a in zip(results['predictions'], results['ground_truth']) if p == a) |
|
|
results['accuracy'] = correct / len(repositories) if repositories else 0 |
|
|
|
|
|
return results |
|
|
|
|
|
def print_benchmark_results(results: Dict): |
|
|
"""Print formatted benchmark results.""" |
|
|
print("=" * 60) |
|
|
print("📊 LICENSE DETECTION BENCHMARK RESULTS") |
|
|
print("=" * 60) |
|
|
|
|
|
print(f"Total repositories evaluated: {results['total_repos']}") |
|
|
print(f"Overall accuracy: {results['accuracy']:.3f}") |
|
|
|
|
|
print("\n📈 Ground Truth Distribution:") |
|
|
for license_type, count in sorted(results['license_distribution'].items(), key=lambda x: x[1], reverse=True)[:10]: |
|
|
percentage = (count / results['total_repos']) * 100 |
|
|
print(f" {license_type}: {count} ({percentage:.1f}%)") |
|
|
|
|
|
print("\n🎯 Prediction Distribution:") |
|
|
for license_type, count in sorted(results['prediction_distribution'].items(), key=lambda x: x[1], reverse=True): |
|
|
percentage = (count / results['total_repos']) * 100 |
|
|
print(f" {license_type}: {count} ({percentage:.1f}%)") |
|
|
|
|
|
print("\n💡 Insights:") |
|
|
print("- CodeReality-1T is deliberately noisy with 0% license detection") |
|
|
print("- This benchmark demonstrates the challenge of license classification") |
|
|
print("- Most repositories lack clear licensing information") |
|
|
print("- Perfect for testing robustness of license detection systems") |
|
|
|
|
|
def main(): |
|
|
"""Run license detection benchmark.""" |
|
|
print("🚀 CodeReality-1T License Detection Benchmark") |
|
|
print("=" * 60) |
|
|
|
|
|
|
|
|
data_dir = "/mnt/z/CodeReality_Final/unified_dataset" |
|
|
sample_size = 500 |
|
|
|
|
|
if not os.path.exists(data_dir): |
|
|
print(f"❌ Dataset directory not found: {data_dir}") |
|
|
print("Please update the data_dir path to point to your CodeReality-1T dataset") |
|
|
return |
|
|
|
|
|
|
|
|
repositories = load_dataset_sample(data_dir, sample_size) |
|
|
|
|
|
if not repositories: |
|
|
print("❌ No repositories loaded. Check dataset path.") |
|
|
return |
|
|
|
|
|
|
|
|
results = evaluate_license_detection(repositories) |
|
|
|
|
|
|
|
|
print_benchmark_results(results) |
|
|
|
|
|
|
|
|
output_file = "license_detection_results.json" |
|
|
with open(output_file, 'w') as f: |
|
|
|
|
|
results_json = { |
|
|
'total_repos': results['total_repos'], |
|
|
'accuracy': results['accuracy'], |
|
|
'license_distribution': dict(results['license_distribution']), |
|
|
'prediction_distribution': dict(results['prediction_distribution']) |
|
|
} |
|
|
json.dump(results_json, f, indent=2) |
|
|
|
|
|
print(f"\n💾 Results saved to: {output_file}") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |