CodeReality / benchmarks /license_detection_benchmark.py
Vincenzo Gallo
Add CodeReality-1T Evaluation Subset (19GB)
6759906
raw
history blame
7.05 kB
#!/usr/bin/env python3
"""
License Detection Benchmark for CodeReality-1T Dataset
Evaluates automated license classification systems
"""
import json
import os
from typing import Dict, List, Tuple
from collections import defaultdict
import random
def load_dataset_sample(data_dir: str, sample_size: int = 1000) -> List[Dict]:
"""Load random sample of repositories from dataset."""
print(f"🔍 Loading sample of {sample_size} repositories...")
repositories = []
# Get available files
files = [f for f in os.listdir(data_dir) if f.endswith('.jsonl')]
random.shuffle(files)
for filename in files[:10]: # Sample from first 10 files
file_path = os.path.join(data_dir, filename)
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
for line in f:
if len(repositories) >= sample_size:
break
try:
repo_data = json.loads(line)
repositories.append(repo_data)
except json.JSONDecodeError:
continue
except Exception as e:
print(f"⚠️ Error reading {filename}: {e}")
continue
if len(repositories) >= sample_size:
break
print(f"✅ Loaded {len(repositories)} repositories")
return repositories
def extract_license_features(repo: Dict) -> Dict:
"""Extract features that could indicate license presence."""
features = {
'has_license_file': False,
'has_readme': False,
'license_keywords_count': 0,
'copyright_mentions': 0,
'file_count': 0,
'detected_license': repo.get('license', 'Unknown')
}
files = repo.get('files', [])
features['file_count'] = len(files)
license_keywords = ['license', 'mit', 'apache', 'gpl', 'bsd', 'copyright']
for file_obj in files:
if isinstance(file_obj, dict):
file_path = file_obj.get('path', '').lower()
content = file_obj.get('content', '').lower()
# Check for license files
if any(keyword in file_path for keyword in ['license', 'copying', 'legal']):
features['has_license_file'] = True
# Check for README
if 'readme' in file_path:
features['has_readme'] = True
# Count license keywords
for keyword in license_keywords:
features['license_keywords_count'] += content.count(keyword)
# Count copyright mentions
features['copyright_mentions'] += content.count('copyright')
return features
def simple_license_classifier(features: Dict) -> str:
"""Simple rule-based license classifier for demonstration."""
# Rule-based classification
if features['has_license_file']:
if features['license_keywords_count'] > 10:
return 'MIT' # Most common
elif features['copyright_mentions'] > 5:
return 'Apache-2.0'
else:
return 'GPL-3.0'
elif features['has_readme'] and features['license_keywords_count'] > 3:
return 'MIT'
elif features['file_count'] > 50 and features['copyright_mentions'] > 2:
return 'Apache-2.0'
else:
return 'Unknown'
def evaluate_license_detection(repositories: List[Dict]) -> Dict:
"""Evaluate license detection performance."""
print("🧮 Evaluating license detection...")
results = {
'total_repos': len(repositories),
'predictions': [],
'ground_truth': [],
'accuracy': 0.0,
'license_distribution': defaultdict(int),
'prediction_distribution': defaultdict(int)
}
for repo in repositories:
features = extract_license_features(repo)
predicted_license = simple_license_classifier(features)
actual_license = features['detected_license']
results['predictions'].append(predicted_license)
results['ground_truth'].append(actual_license)
results['license_distribution'][actual_license] += 1
results['prediction_distribution'][predicted_license] += 1
# Calculate accuracy (note: actual dataset has mostly 'Unknown' licenses)
correct = sum(1 for p, a in zip(results['predictions'], results['ground_truth']) if p == a)
results['accuracy'] = correct / len(repositories) if repositories else 0
return results
def print_benchmark_results(results: Dict):
"""Print formatted benchmark results."""
print("=" * 60)
print("📊 LICENSE DETECTION BENCHMARK RESULTS")
print("=" * 60)
print(f"Total repositories evaluated: {results['total_repos']}")
print(f"Overall accuracy: {results['accuracy']:.3f}")
print("\n📈 Ground Truth Distribution:")
for license_type, count in sorted(results['license_distribution'].items(), key=lambda x: x[1], reverse=True)[:10]:
percentage = (count / results['total_repos']) * 100
print(f" {license_type}: {count} ({percentage:.1f}%)")
print("\n🎯 Prediction Distribution:")
for license_type, count in sorted(results['prediction_distribution'].items(), key=lambda x: x[1], reverse=True):
percentage = (count / results['total_repos']) * 100
print(f" {license_type}: {count} ({percentage:.1f}%)")
print("\n💡 Insights:")
print("- CodeReality-1T is deliberately noisy with 0% license detection")
print("- This benchmark demonstrates the challenge of license classification")
print("- Most repositories lack clear licensing information")
print("- Perfect for testing robustness of license detection systems")
def main():
"""Run license detection benchmark."""
print("🚀 CodeReality-1T License Detection Benchmark")
print("=" * 60)
# Configuration
data_dir = "/mnt/z/CodeReality_Final/unified_dataset"
sample_size = 500
if not os.path.exists(data_dir):
print(f"❌ Dataset directory not found: {data_dir}")
print("Please update the data_dir path to point to your CodeReality-1T dataset")
return
# Load dataset sample
repositories = load_dataset_sample(data_dir, sample_size)
if not repositories:
print("❌ No repositories loaded. Check dataset path.")
return
# Run evaluation
results = evaluate_license_detection(repositories)
# Print results
print_benchmark_results(results)
# Save results
output_file = "license_detection_results.json"
with open(output_file, 'w') as f:
# Convert defaultdict to regular dict for JSON serialization
results_json = {
'total_repos': results['total_repos'],
'accuracy': results['accuracy'],
'license_distribution': dict(results['license_distribution']),
'prediction_distribution': dict(results['prediction_distribution'])
}
json.dump(results_json, f, indent=2)
print(f"\n💾 Results saved to: {output_file}")
if __name__ == "__main__":
main()