BCI-grid-movement-v1 / load_bci_dataset.py
webxos's picture
Upload 6 files
c94dfa2 verified
import json
import numpy as np
from datasets import Dataset, DatasetDict
def load_bci_dataset(data_path="."):
"""Load BCI Grid Movement Intent Dataset"""
# Load train data
train_data = []
with open(f"{data_path}/data/train-00000-of-00001.jsonl", "r") as f:
for line in f:
train_data.append(json.loads(line.strip()))
# Load test data
test_data = []
with open(f"{data_path}/data/test-00000-of-00001.jsonl", "r") as f:
for line in f:
test_data.append(json.loads(line.strip()))
# Create dataset
dataset = DatasetDict({
"train": Dataset.from_list(train_data),
"test": Dataset.from_list(test_data)
})
print(f"Dataset loaded: {len(dataset['train'])} train, {len(dataset['test'])} test samples")
return dataset
def prepare_for_ml(dataset, target_intent="W"):
"""Prepare data for machine learning"""
# Extract neural features (12 channels)
X = np.array([sample["neural_channels"] for sample in dataset])
# Extract specific movement intent
if target_intent == "W":
y = np.array([sample["movement_intent"][0] for sample in dataset])
elif target_intent == "A":
y = np.array([sample["movement_intent"][1] for sample in dataset])
elif target_intent == "S":
y = np.array([sample["movement_intent"][2] for sample in dataset])
elif target_intent == "D":
y = np.array([sample["movement_intent"][3] for sample in dataset])
else:
# Multi-label classification
y = np.array([sample["movement_intent"] for sample in dataset])
return X, y
# Example usage
if __name__ == "__main__":
# Load dataset
dataset = load_bci_dataset()
# Prepare for W intent prediction
X_train, y_train = prepare_for_ml(dataset["train"], "W")
X_test, y_test = prepare_for_ml(dataset["test"], "W")
print(f"Training set: {X_train.shape}, {y_train.shape}")
print(f"Test set: {X_test.shape}, {y_test.shape}")
# Calculate class distribution
print(f"Class distribution (W intent):")
print(f" True: {np.sum(y_train == 1)} ({np.mean(y_train == 1)*100:.1f}%)")
print(f" False: {np.sum(y_train == 0)} ({np.mean(y_train == 0)*100:.1f}%)")