DA3-LARGE / README.md
Ivy132's picture
Update README.md
c54c26b verified
---
license: cc-by-nc-4.0
tags:
- depth-estimation
- computer-vision
- monocular-depth
- multi-view-geometry
- pose-estimation
library_name: depth-anything-3
pipeline_tag: depth-estimation
---
# Depth Anything 3: DA3-LARGE
<div align="center">
[![Project Page](https://img.shields.io/badge/Project_Page-Depth_Anything_3-green)](https://depth-anything-3.github.io)
[![Paper](https://img.shields.io/badge/arXiv-Depth_Anything_3-red)](https://arxiv.org/abs/)
[![Demo](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue)](https://huggingface.co/spaces/depth-anything/Depth-Anything-3) # noqa: E501
<!-- Benchmark badge removed as per request -->
</div>
## Model Description
DA3 Large model for multi-view depth estimation and camera pose estimation. Foundation model with unified depth-ray representation.
| Property | Value |
|----------|-------|
| **Model Series** | Any-view Model |
| **Parameters** | 0.35B |
| **License** | CC BY-NC 4.0 |
## Capabilities
- βœ… Relative Depth
- βœ… Pose Estimation
- βœ… Pose Conditioning
## Quick Start
### Installation
```bash
git clone https://github.com/ByteDance-Seed/depth-anything-3
cd depth-anything-3
pip install -e .
```
### Basic Example
```python
import torch
from depth_anything_3.api import DepthAnything3
# Load model from Hugging Face Hub
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DepthAnything3.from_pretrained("depth-anything/da3-large")
model = model.to(device=device)
# Run inference on images
images = ["image1.jpg", "image2.jpg"] # List of image paths, PIL Images, or numpy arrays
prediction = model.inference(
images,
export_dir="output",
export_format="glb" # Options: glb, npz, ply, mini_npz, gs_ply, gs_video
)
# Access results
print(prediction.depth.shape) # Depth maps: [N, H, W] float32
print(prediction.conf.shape) # Confidence maps: [N, H, W] float32
print(prediction.extrinsics.shape) # Camera poses (w2c): [N, 3, 4] float32
print(prediction.intrinsics.shape) # Camera intrinsics: [N, 3, 3] float32
```
### Command Line Interface
```bash
# Process images with auto mode
da3 auto path/to/images \
--export-format glb \
--export-dir output \
--model-dir depth-anything/da3-large
# Use backend for faster repeated inference
da3 backend --model-dir depth-anything/da3-large
da3 auto path/to/images --export-format glb --use-backend
```
## Model Details
- **Developed by:** ByteDance Seed Team
- **Model Type:** Vision Transformer for Visual Geometry
- **Architecture:** Plain transformer with unified depth-ray representation
- **Training Data:** Public academic datasets only
### Key Insights
πŸ’Ž A **single plain transformer** (e.g., vanilla DINO encoder) is sufficient as a backbone without architectural specialization. # noqa: E501
✨ A singular **depth-ray representation** obviates the need for complex multi-task learning.
## Performance
πŸ† Depth Anything 3 significantly outperforms:
- **Depth Anything 2** for monocular depth estimation
- **VGGT** for multi-view depth estimation and pose estimation
For detailed benchmarks, please refer to our [paper](https://depth-anything-3.github.io). # noqa: E501
## Limitations
- The model is trained on academic datasets and may have limitations on certain domain-specific images # noqa: E501
- Performance may vary depending on image quality, lighting conditions, and scene complexity
## Citation
If you find Depth Anything 3 useful in your research or projects, please cite:
```bibtex
@article{depthanything3,
title={Depth Anything 3: Recovering the visual space from any views},
author={Haotong Lin and Sili Chen and Jun Hao Liew and Donny Y. Chen and Zhenyu Li and Guang Shi and Jiashi Feng and Bingyi Kang}, # noqa: E501
journal={arXiv preprint arXiv:XXXX.XXXXX},
year={2025}
}
```
## Links
- 🏠 [Project Page](https://depth-anything-3.github.io)
- πŸ“„ [Paper](https://arxiv.org/abs/)
- πŸ’» [GitHub Repository](https://github.com/ByteDance-Seed/depth-anything-3)
- πŸ€— [Hugging Face Demo](https://huggingface.co/spaces/depth-anything/Depth-Anything-3)
- πŸ“š [Documentation](https://github.com/ByteDance-Seed/depth-anything-3#-useful-documentation)
## Authors
[Haotong Lin](https://haotongl.github.io/) Β· [Sili Chen](https://github.com/SiliChen321) Β· [Junhao Liew](https://liewjunhao.github.io/) Β· [Donny Y. Chen](https://donydchen.github.io) Β· [Zhenyu Li](https://zhyever.github.io/) Β· [Guang Shi](https://scholar.google.com/citations?user=MjXxWbUAAAAJ&hl=en) Β· [Jiashi Feng](https://scholar.google.com.sg/citations?user=Q8iay0gAAAAJ&hl=en) Β· [Bingyi Kang](https://bingykang.github.io/) # noqa: E501