Transformers documentation
Command A Vision
This model was released on 2025-07-31 and added to Hugging Face Transformers on 2025-07-31.
Command A Vision
Overview
Command A Vision (blog post) is a state-of-the-art multimodal model designed to seamlessly integrate visual and textual information for a wide range of applications. By combining advanced computer vision techniques with natural language processing capabilities, Command A Vision enables users to analyze, understand, and generate insights from both visual and textual data.
The model excels at tasks including image captioning, visual question answering, document understanding, and chart understanding. This makes it a versatile tool for AI practitioners. Its ability to process complex visual and textual inputs makes it useful in settings where text-only representations are imprecise or unavailable, like real-world image understanding and graphics-heavy document processing.
Command A Vision is built upon a robust architecture that leverages the latest advancements in VLMs. It’s highly performant and efficient, even when dealing with large-scale datasets. The model’s flexibility makes it suitable for a wide range of use cases, from content moderation and image search to medical imaging analysis and robotics.
Usage tips
The model and image processor can be loaded as follows:
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
model_id = "CohereLabs/command-a-vision-07-2025"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="auto", dtype=torch.float16
)
# Format message with the Command-A-Vision chat template
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://images.pexels.com/photos/1108099/pexels-photo-1108099.jpeg",
},
{"type": "text", "text": "what is in this image?"},
],
},
]
inputs = processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
print(
processor.tokenizer.decode(
gen_tokens[0][inputs.input_ids.shape[1] :], skip_special_tokens=True
)
)Cohere2VisionConfig
class transformers.Cohere2VisionConfig
< source >( vision_config = None text_config = None downsample_factor = 2 image_token_id = 255036 alignment_intermediate_size = 36864 **kwargs )
Parameters
- vision_config (
Union[AutoConfig, dict], optional, defaults toSiglipVisionConfig) — The config object or dictionary of the vision backbone. - text_config (
Union[AutoConfig, dict], optional, defaults toCohere2Config) — The config object or dictionary of the text backbone. - downsample_factor (
int, optional, defaults to 2) — The factor by which to downsample the input image. - image_token_id (
int, optional, defaults to 255036) — The token ID to use as placeholder for the image input. - alignment_intermediate_size (
int, optional, defaults to 36864) — The size of the intermediate layer for alignment.
This is the configuration class to store the configuration of a Cohere2VisionForConditionalGeneration. It is used to instantiate an Cohere2 Vision model according to the specified arguments, defining the model architecture.
CohereLabs/command-a-vision-07-2025
Configuration objects inherit from PreTrainedConfig and can be used to control the model outputs. Read the documentation from PreTrainedConfig for more information.
Cohere2VisionForConditionalGeneration
class transformers.Cohere2VisionForConditionalGeneration
< source >( config: Cohere2VisionConfig )
Parameters
- config (Cohere2VisionConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The COHERE2_VISION model which consists of a vision backbone and a language model.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None pixel_values: typing.Optional[torch.FloatTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 image_sizes: typing.Optional[torch.Tensor] = None **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.models.cohere2_vision.modeling_cohere2_vision.Cohere2VisionCausalLMOutputWithPast or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- pixel_values (
torch.FloatTensorof shape(batch_size, num_channels, image_size, image_size), optional) — The tensors corresponding to the input images. Pixel values can be obtained usingimage_processor_class. Seeimage_processor_class.__call__for details (Cohere2VisionProcessor usesimage_processor_classfor processing images). - attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]. - past_key_values (
~cache_utils.Cache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_valuesreturned by the model at a previous stage of decoding, whenuse_cache=Trueorconfig.use_cache=True.Only Cache instance is allowed as input, see our kv cache guide. If no
past_key_valuesare passed, DynamicCache will be initialized by default.The model will output the same cache format that is fed as input.
If
past_key_valuesare used, the user is expected to input only unprocessedinput_ids(those that don’t have their past key value states given to this model) of shape(batch_size, unprocessed_length)instead of allinput_idsof shape(batch_size, sequence_length). - inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. - labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]. - use_cache (
bool, optional) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). - cache_position (
torch.LongTensorof shape(sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - logits_to_keep (
Union[int, torch.Tensor], defaults to0) — If anint, compute logits for the lastlogits_to_keeptokens. If0, calculate logits for allinput_ids(special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If atorch.Tensor, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). - image_sizes (
torch.Tensorof shape(batch_size, 2), optional) — The sizes of the images in the batch, being (height, width) for each image.
Returns
transformers.models.cohere2_vision.modeling_cohere2_vision.Cohere2VisionCausalLMOutputWithPast or tuple(torch.FloatTensor)
A transformers.models.cohere2_vision.modeling_cohere2_vision.Cohere2VisionCausalLMOutputWithPast or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (Cohere2VisionConfig) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) — Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
past_key_values (
Cache, optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — It is a Cache instance. For more details, see our kv cache guide.Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding. -
hidden_states (
tuple[torch.FloatTensor], optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple[torch.FloatTensor], optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
image_hidden_states (
torch.FloatTensor, optional) — Atorch.FloatTensorof size(batch_size, num_images, sequence_length, hidden_size). image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
The Cohere2VisionForConditionalGeneration forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
>>> from transformers import AutoProcessor, Cohere2VisionForConditionalGeneration
>>> import torch
>>> processor = AutoProcessor.from_pretrained("CohereLabs/command-a-vision-07-2025", use_fast=True)
>>> model = Cohere2VisionForConditionalGeneration.from_pretrained("CohereLabs/command-a-vision-07-2025", device_map="auto")
>>> messages = [
... {
... "role": "user",
... "content": [
... {
... "type": "image",
... "url": "https://images.pexels.com/photos/1108099/pexels-photo-1108099.jpeg",
... },
... {"type": "text", "text": "what is in this image?"},
... ],
... },
... ]
>>> inputs = processor.apply_chat_template(
... messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt",
... ).to(model.device)
>>> gen_tokens = model.generate(**inputs, max_new_tokens=300, do_sample=True, temperature=0.3)
>>> processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)Cohere2VisionModel
class transformers.Cohere2VisionModel
< source >( config: Cohere2VisionConfig )
Parameters
- config (Cohere2VisionConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The Cohere2Vision model which consists of a vision backbone and a language model, without a language modeling head.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None pixel_values: typing.Optional[torch.FloatTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) → transformers.models.cohere2_vision.modeling_cohere2_vision.Cohere2VisionModelOutputWithPast or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- pixel_values (
torch.FloatTensorof shape(batch_size, num_channels, image_size, image_size), optional) — The tensors corresponding to the input images. Pixel values can be obtained usingimage_processor_class. Seeimage_processor_class.__call__for details (Cohere2VisionProcessor usesimage_processor_classfor processing images). - attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]. - past_key_values (
~cache_utils.Cache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_valuesreturned by the model at a previous stage of decoding, whenuse_cache=Trueorconfig.use_cache=True.Only Cache instance is allowed as input, see our kv cache guide. If no
past_key_valuesare passed, DynamicCache will be initialized by default.The model will output the same cache format that is fed as input.
If
past_key_valuesare used, the user is expected to input only unprocessedinput_ids(those that don’t have their past key value states given to this model) of shape(batch_size, unprocessed_length)instead of allinput_idsof shape(batch_size, sequence_length). - inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. - use_cache (
bool, optional) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). - cache_position (
torch.LongTensorof shape(sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
Returns
transformers.models.cohere2_vision.modeling_cohere2_vision.Cohere2VisionModelOutputWithPast or tuple(torch.FloatTensor)
A transformers.models.cohere2_vision.modeling_cohere2_vision.Cohere2VisionModelOutputWithPast or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (Cohere2VisionConfig) and inputs.
-
last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the model. -
past_key_values (
Cache, optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — It is a Cache instance. For more details, see our kv cache guide.Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding. -
hidden_states (
tuple[torch.FloatTensor, ...], optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple[torch.FloatTensor, ...], optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
image_hidden_states (
torch.FloatTensor, optional) — Atorch.FloatTensorof size(batch_size, num_images, sequence_length, hidden_size). image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
The Cohere2VisionModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Cohere2VisionImageProcessorFast
class transformers.Cohere2VisionImageProcessorFast
< source >( **kwargs: typing_extensions.Unpack[transformers.models.cohere2_vision.image_processing_cohere2_vision_fast.Cohere2VisionFastImageProcessorKwargs] )
Constructs a fast Cohere2 Vision image processor.
preprocess
< source >( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] **kwargs: typing_extensions.Unpack[transformers.models.cohere2_vision.image_processing_cohere2_vision_fast.Cohere2VisionFastImageProcessorKwargs] ) → <class 'transformers.image_processing_base.BatchFeature'>
Parameters
- images (
Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']]) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, setdo_rescale=False. - do_convert_rgb (
bool, optional) — Whether to convert the image to RGB. - do_resize (
bool, optional) — Whether to resize the image. - size (
Annotated[Union[int, list[int], tuple[int, ...], dict[str, int], NoneType], None]) — Describes the maximum input dimensions to the model. - crop_size (
Annotated[Union[int, list[int], tuple[int, ...], dict[str, int], NoneType], None]) — Size of the output image after applyingcenter_crop. - resample (
Annotated[Union[PILImageResampling, int, NoneType], None]) — Resampling filter to use if resizing the image. This can be one of the enumPILImageResampling. Only has an effect ifdo_resizeis set toTrue. - do_rescale (
bool, optional) — Whether to rescale the image. - rescale_factor (
float, optional) — Rescale factor to rescale the image by ifdo_rescaleis set toTrue. - do_normalize (
bool, optional) — Whether to normalize the image. - image_mean (
Union[float, list[float], tuple[float, ...], NoneType]) — Image mean to use for normalization. Only has an effect ifdo_normalizeis set toTrue. - image_std (
Union[float, list[float], tuple[float, ...], NoneType]) — Image standard deviation to use for normalization. Only has an effect ifdo_normalizeis set toTrue. - do_pad (
bool, optional) — Whether to pad the image. Padding is done either to the largest size in the batch or to a fixed square size per image. The exact padding strategy depends on the model. - pad_size (
Annotated[Union[int, list[int], tuple[int, ...], dict[str, int], NoneType], None]) — The size in{"height": int, "width" int}to pad the images to. Must be larger than any image size provided for preprocessing. Ifpad_sizeis not provided, images will be padded to the largest height and width in the batch. Applied only whendo_pad=True. - do_center_crop (
bool, optional) — Whether to center crop the image. - data_format (
Union[str, ~image_utils.ChannelDimension, NoneType]) — OnlyChannelDimension.FIRSTis supported. Added for compatibility with slow processors. - input_data_format (
Union[str, ~image_utils.ChannelDimension, NoneType]) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:"channels_first"orChannelDimension.FIRST: image in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: image in (height, width, num_channels) format."none"orChannelDimension.NONE: image in (height, width) format.
- device (
Annotated[str, None], optional) — The device to process the images on. If unset, the device is inferred from the input images. - return_tensors (
Annotated[Union[str, ~utils.generic.TensorType, NoneType], None]) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors. - disable_grouping (
bool, optional) — Whether to disable grouping of images by size to process them individually and not in batches. If None, will be set to True if the images are on CPU, and False otherwise. This choice is based on empirical observations, as detailed here: https://github.com/huggingface/transformers/pull/38157 - crop_to_patches (
bool, optional, defaults toFalse) — Whether to crop the image to patches. Can be overridden by thecrop_to_patchesparameter in thepreprocessmethod. - min_patches (
int, optional, defaults to 1) — The minimum number of patches to be extracted from the image. Only has an effect ifcrop_to_patchesis set toTrue. Can be overridden by themin_patchesparameter in thepreprocessmethod. - max_patches (
int, optional, defaults to 12) — The maximum number of patches to be extracted from the image. Only has an effect ifcrop_to_patchesis set toTrue. Can be overridden by themax_patchesparameter in thepreprocessmethod.
Returns
<class 'transformers.image_processing_base.BatchFeature'>
- data (
dict) — Dictionary of lists/arrays/tensors returned by the call method (‘pixel_values’, etc.). - tensor_type (
Union[None, str, TensorType], optional) — You can give a tensor_type here to convert the lists of integers in PyTorch/Numpy Tensors at initialization.
Cohere2VisionProcessor
class transformers.Cohere2VisionProcessor
< source >( image_processor = None tokenizer = None chat_template = None **kwargs )
Parameters
- image_processor (AutoImageProcessor, optional) — The image processor is a required input.
- tokenizer ([
PreTrainedTokenizer,PreTrainedTokenizerFast], optional) — The tokenizer is a required input. - chat_template (
str, optional) — A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
Constructs a Cohere2Vision processor which wraps a AutoImageProcessor and
PretrainedTokenizerFast tokenizer into a single processor that inherits both the image processor and
tokenizer functionalities. See the __call__() and decode() for more information.
This method forwards all its arguments to PreTrainedTokenizerFast’s batch_decode(). Please refer to the docstring of this method for more information.
This method forwards all its arguments to PreTrainedTokenizerFast’s decode(). Please refer to the docstring of this method for more information.