Transformers documentation
BLIP
This model was released on 2022-01-28 and added to Hugging Face Transformers on 2022-12-21.
BLIP
BLIP (Bootstrapped Language-Image Pretraining) is a vision-language pretraining (VLP) framework designed for both understanding and generation tasks. Most existing pretrained models are only good at one or the other. It uses a captioner to generate captions and a filter to remove the noisy captions. This increases training data quality and more effectively uses the messy web data.
You can find all the original BLIP checkpoints under the BLIP collection.
This model was contributed by ybelkada.
Click on the BLIP models in the right sidebar for more examples of how to apply BLIP to different vision language tasks.
The example below demonstrates how to visual question answering with Pipeline or the AutoModel class.
import torch
from transformers import pipeline
pipeline = pipeline(
task="visual-question-answering",
model="Salesforce/blip-vqa-base",
dtype=torch.float16,
device=0
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
pipeline(question="What is the weather in this image?", image=url)Resources
Refer to this notebook to learn how to fine-tune BLIP for image captioning on a custom dataset.
BlipConfig
class transformers.BlipConfig
< source >( text_config = None vision_config = None projection_dim = 512 logit_scale_init_value = 2.6592 image_text_hidden_size = 256 label_smoothing = 0.0 **kwargs )
Parameters
- text_config (
dict, optional) — Dictionary of configuration options used to initialize BlipTextConfig. - vision_config (
dict, optional) — Dictionary of configuration options used to initialize BlipVisionConfig. - projection_dim (
int, optional, defaults to 512) — Dimensionality of text and vision projection layers. - logit_scale_init_value (
float, optional, defaults to 2.6592) — The initial value of the logit_scale parameter. Default is used as per the original BLIP implementation. - image_text_hidden_size (
int, optional, defaults to 256) — Dimensionality of the hidden state of the image-text fusion layer. - label_smoothing (float, optional, optional, defaults to 0.0) —
A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets
become a mixture of the original ground truth and a uniform distribution as described in
Rethinking the Inception Architecture for Computer Vision <https://huggingface.co/papers/1512.00567>__. Default: :math:0.0. - kwargs (optional) — Dictionary of keyword arguments.
BlipConfig is the configuration class to store the configuration of a BlipModel. It is used to instantiate a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the BLIP-base Salesforce/blip-vqa-base architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import BlipConfig, BlipModel
>>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration
>>> configuration = BlipConfig()
>>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration
>>> model = BlipModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig
>>> # Initializing a BLIPText and BLIPVision configuration
>>> config_text = BlipTextConfig()
>>> config_vision = BlipVisionConfig()
>>> config = BlipConfig.from_text_vision_configs(config_text, config_vision)from_text_vision_configs
< source >( text_config vision_config **kwargs ) → PreTrainedConfig
Returns
PreTrainedConfig
An instance of a configuration object
Instantiate a model config (or a derived class) from text model configuration and vision model configuration.
BlipTextConfig
class transformers.BlipTextConfig
< source >( vocab_size = 30524 hidden_size = 768 encoder_hidden_size = 768 intermediate_size = 3072 projection_dim = 768 num_hidden_layers = 12 num_attention_heads = 8 max_position_embeddings = 512 hidden_act = 'gelu' layer_norm_eps = 1e-12 hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 initializer_range = 0.02 bos_token_id = 30522 eos_token_id = 2 pad_token_id = 0 sep_token_id = 102 is_decoder = True use_cache = True label_smoothing = 0.0 **kwargs )
Parameters
- vocab_size (
int, optional, defaults to 30524) — Vocabulary size of theBliptext model. Defines the number of different tokens that can be represented by theinputs_idspassed when calling BlipModel. - hidden_size (
int, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer. - encoder_hidden_size (
int, optional, defaults to 768) — Dimensionality of the encoder layers from the vision model. - intermediate_size (
int, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. - num_hidden_layers (
int, optional, defaults to 12) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int, optional, defaults to 8) — Number of attention heads for each attention layer in the Transformer encoder. - max_position_embeddings (
int, optional, defaults to 512) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). - hidden_act (
strorfunction, optional, defaults to"gelu") — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu","relu","selu"and"gelu_new""gelu"are supported. - layer_norm_eps (
float, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers. - hidden_dropout_prob (
float, optional, defaults to 0.0) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. - attention_dropout (
float, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - initializer_range (
float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - bos_token_id (
int, optional, defaults to 30522) — The id of thebeginning-of-sequencetoken. - eos_token_id (
int, optional, defaults to 2) — The id of theend-of-sequencetoken. - pad_token_id (
int, optional, defaults to 0) — The id of thepaddingtoken. - sep_token_id (
int, optional, defaults to 102) — The id of theseparatortoken. - is_decoder (
bool, optional, defaults toTrue) — Whether the model is used as a decoder. - use_cache (
bool, optional, defaults toTrue) — Whether or not the model should return the last key/values attentions (not used by all models). - label_smoothing (float, optional) —
A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets
become a mixture of the original ground truth and a uniform distribution as described in
Rethinking the Inception Architecture for Computer Vision <https://huggingface.co/papers/1512.00567>__. Default: :math:0.0.
This is the configuration class to store the configuration of a BlipTextModel. It is used to instantiate a BLIP
text model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the BlipText used by the base
architectures.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import BlipTextConfig, BlipTextModel
>>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration
>>> configuration = BlipTextConfig()
>>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration
>>> model = BlipTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.configBlipVisionConfig
class transformers.BlipVisionConfig
< source >( hidden_size = 768 intermediate_size = 3072 projection_dim = 512 num_hidden_layers = 12 num_attention_heads = 12 image_size = 384 patch_size = 16 hidden_act = 'gelu' layer_norm_eps = 1e-05 attention_dropout = 0.0 initializer_range = 1e-10 **kwargs )
Parameters
- hidden_size (
int, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer. - intermediate_size (
int, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. - num_hidden_layers (
int, optional, defaults to 12) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder. - image_size (
int, optional, defaults to 384) — The size (resolution) of each image. - patch_size (
int, optional, defaults to 16) — The size (resolution) of each patch. - hidden_act (
strorfunction, optional, defaults to"gelu") — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu","relu","selu"and"gelu_new""gelu"are supported. - layer_norm_eps (
float, optional, defaults to 1e-5) — The epsilon used by the layer normalization layers. - attention_dropout (
float, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - initializer_range (
float, optional, defaults to 1e-10) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
This is the configuration class to store the configuration of a BlipVisionModel. It is used to instantiate a BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the Blip-base Salesforce/blip-vqa-base architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import BlipVisionConfig, BlipVisionModel
>>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration
>>> configuration = BlipVisionConfig()
>>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration
>>> model = BlipVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.configBlipProcessor
class transformers.BlipProcessor
< source >( image_processor tokenizer **kwargs )
Parameters
- image_processor (
BlipImageProcessor) — An instance of BlipImageProcessor. The image processor is a required input. - tokenizer (
BertTokenizerFast) — An instance of [‘BertTokenizerFast`]. The tokenizer is a required input.
Constructs a BLIP processor which wraps a BERT tokenizer and BLIP image processor into a single processor.
BlipProcessor offers all the functionalities of BlipImageProcessor and BertTokenizerFast. See the
docstring of __call__() and decode() for more information.
BlipImageProcessor
class transformers.BlipImageProcessor
< source >( do_resize: bool = True size: typing.Optional[dict[str, int]] = None resample: Resampling = <Resampling.BICUBIC: 3> do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None do_convert_rgb: bool = True **kwargs )
Parameters
- do_resize (
bool, optional, defaults toTrue) — Whether to resize the image’s (height, width) dimensions to the specifiedsize. Can be overridden by thedo_resizeparameter in thepreprocessmethod. - size (
dict, optional, defaults to{"height" -- 384, "width": 384}): Size of the output image after resizing. Can be overridden by thesizeparameter in thepreprocessmethod. - resample (
PILImageResampling, optional, defaults toResampling.BICUBIC) — Resampling filter to use if resizing the image. Only has an effect ifdo_resizeis set toTrue. Can be overridden by theresampleparameter in thepreprocessmethod. - do_rescale (
bool, optional, defaults toTrue) — Whether to rescale the image by the specified scalerescale_factor. Can be overridden by thedo_rescaleparameter in thepreprocessmethod. - rescale_factor (
intorfloat, optional, defaults to1/255) — Scale factor to use if rescaling the image. Only has an effect ifdo_rescaleis set toTrue. Can be overridden by therescale_factorparameter in thepreprocessmethod. - do_normalize (
bool, optional, defaults toTrue) — Whether to normalize the image. Can be overridden by thedo_normalizeparameter in thepreprocessmethod. Can be overridden by thedo_normalizeparameter in thepreprocessmethod. - image_mean (
floatorlist[float], optional, defaults toIMAGENET_STANDARD_MEAN) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by theimage_meanparameter in thepreprocessmethod. Can be overridden by theimage_meanparameter in thepreprocessmethod. - image_std (
floatorlist[float], optional, defaults toIMAGENET_STANDARD_STD) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by theimage_stdparameter in thepreprocessmethod. Can be overridden by theimage_stdparameter in thepreprocessmethod. - do_convert_rgb (
bool, optional, defaults toTrue) — Whether to convert the image to RGB.
Constructs a BLIP image processor.
preprocess
< source >( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] do_resize: typing.Optional[bool] = None size: typing.Optional[dict[str, int]] = None resample: typing.Optional[PIL.Image.Resampling] = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Optional[float] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None do_convert_rgb: typing.Optional[bool] = None data_format: ChannelDimension = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None )
Parameters
- images (
ImageInput) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, setdo_rescale=False. - do_resize (
bool, optional, defaults toself.do_resize) — Whether to resize the image. - size (
dict[str, int], optional, defaults toself.size) — Controls the size of the image afterresize. The shortest edge of the image is resized tosize["shortest_edge"]whilst preserving the aspect ratio. If the longest edge of this resized image is >int(size["shortest_edge"] * (1333 / 800)), then the image is resized again to make the longest edge equal toint(size["shortest_edge"] * (1333 / 800)). - resample (
PILImageResampling, optional, defaults toself.resample) — Resampling filter to use if resizing the image. Only has an effect ifdo_resizeis set toTrue. - do_rescale (
bool, optional, defaults toself.do_rescale) — Whether to rescale the image values between [0 - 1]. - rescale_factor (
float, optional, defaults toself.rescale_factor) — Rescale factor to rescale the image by ifdo_rescaleis set toTrue. - do_normalize (
bool, optional, defaults toself.do_normalize) — Whether to normalize the image. - image_mean (
floatorlist[float], optional, defaults toself.image_mean) — Image mean to normalize the image by ifdo_normalizeis set toTrue. - image_std (
floatorlist[float], optional, defaults toself.image_std) — Image standard deviation to normalize the image by ifdo_normalizeis set toTrue. - do_convert_rgb (
bool, optional, defaults toself.do_convert_rgb) — Whether to convert the image to RGB. - return_tensors (
strorTensorType, optional) — The type of tensors to return. Can be one of:- Unset: Return a list of
np.ndarray. TensorType.TENSORFLOWor'tf': Return a batch of typetf.Tensor.TensorType.PYTORCHor'pt': Return a batch of typetorch.Tensor.TensorType.NUMPYor'np': Return a batch of typenp.ndarray.TensorType.JAXor'jax': Return a batch of typejax.numpy.ndarray.
- Unset: Return a list of
- data_format (
ChannelDimensionorstr, optional, defaults toChannelDimension.FIRST) — The channel dimension format for the output image. Can be one of:"channels_first"orChannelDimension.FIRST: image in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: image in (height, width, num_channels) format.- Unset: Use the channel dimension format of the input image.
- input_data_format (
ChannelDimensionorstr, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:"channels_first"orChannelDimension.FIRST: image in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: image in (height, width, num_channels) format."none"orChannelDimension.NONE: image in (height, width) format.
Preprocess an image or batch of images.
BlipImageProcessorFast
class transformers.BlipImageProcessorFast
< source >( **kwargs: typing_extensions.Unpack[transformers.image_processing_utils_fast.DefaultFastImageProcessorKwargs] )
Constructs a fast Blip image processor.
preprocess
< source >( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] *args **kwargs: typing_extensions.Unpack[transformers.image_processing_utils_fast.DefaultFastImageProcessorKwargs] ) → <class 'transformers.image_processing_base.BatchFeature'>
Parameters
- images (
Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']]) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, setdo_rescale=False. - do_resize (
bool, optional) — Whether to resize the image. - size (
dict[str, int], optional) — Describes the maximum input dimensions to the model. - default_to_square (
bool, optional) — Whether to default to a square image when resizing, if size is an int. - resample (
Union[PILImageResampling, F.InterpolationMode, NoneType]) — Resampling filter to use if resizing the image. This can be one of the enumPILImageResampling. Only has an effect ifdo_resizeis set toTrue. - do_center_crop (
bool, optional) — Whether to center crop the image. - crop_size (
dict[str, int], optional) — Size of the output image after applyingcenter_crop. - do_rescale (
bool, optional) — Whether to rescale the image. - rescale_factor (
Union[int, float, NoneType]) — Rescale factor to rescale the image by ifdo_rescaleis set toTrue. - do_normalize (
bool, optional) — Whether to normalize the image. - image_mean (
Union[float, list[float], NoneType]) — Image mean to use for normalization. Only has an effect ifdo_normalizeis set toTrue. - image_std (
Union[float, list[float], NoneType]) — Image standard deviation to use for normalization. Only has an effect ifdo_normalizeis set toTrue. - do_pad (
bool, optional) — Whether to pad the image. Padding is done either to the largest size in the batch or to a fixed square size per image. The exact padding strategy depends on the model. - pad_size (
dict[str, int], optional) — The size in{"height": int, "width" int}to pad the images to. Must be larger than any image size provided for preprocessing. Ifpad_sizeis not provided, images will be padded to the largest height and width in the batch. Applied only whendo_pad=True. - do_convert_rgb (
bool, optional) — Whether to convert the image to RGB. - return_tensors (
Union[str, ~utils.generic.TensorType, NoneType]) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors. - data_format (
~image_utils.ChannelDimension, optional) — OnlyChannelDimension.FIRSTis supported. Added for compatibility with slow processors. - input_data_format (
Union[str, ~image_utils.ChannelDimension, NoneType]) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:"channels_first"orChannelDimension.FIRST: image in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: image in (height, width, num_channels) format."none"orChannelDimension.NONE: image in (height, width) format.
- device (
torch.device, optional) — The device to process the images on. If unset, the device is inferred from the input images. - disable_grouping (
bool, optional) — Whether to disable grouping of images by size to process them individually and not in batches. If None, will be set to True if the images are on CPU, and False otherwise. This choice is based on empirical observations, as detailed here: https://github.com/huggingface/transformers/pull/38157
Returns
<class 'transformers.image_processing_base.BatchFeature'>
- data (
dict) — Dictionary of lists/arrays/tensors returned by the call method (‘pixel_values’, etc.). - tensor_type (
Union[None, str, TensorType], optional) — You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at initialization.
BlipModel
BlipModel is going to be deprecated in future versions, please use BlipForConditionalGeneration, BlipForImageTextRetrieval or BlipForQuestionAnswering depending on your usecase.
class transformers.BlipModel
< source >( config: BlipConfig )
Parameters
- config (BlipConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
This model is going to be deprecated in future versions. Please use BlipForConditionalGeneration, BlipForQuestionAnswering or BlipForImageTextRetrieval depending on your usecase.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None pixel_values: typing.Optional[torch.FloatTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None return_loss: typing.Optional[bool] = None interpolate_pos_encoding: bool = False **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.models.blip.modeling_blip.BlipOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- pixel_values (
torch.FloatTensorof shape(batch_size, num_channels, image_size, image_size), optional) — The tensors corresponding to the input images. Pixel values can be obtained using BlipImageProcessor. See BlipImageProcessor.call() for details (BlipProcessor uses BlipImageProcessor for processing images). - attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]. - return_loss (
bool, optional) — Whether or not to return the contrastive loss. - interpolate_pos_encoding (
bool, defaults toFalse) — Whether to interpolate the pre-trained position encodings.
Returns
transformers.models.blip.modeling_blip.BlipOutput or tuple(torch.FloatTensor)
A transformers.models.blip.modeling_blip.BlipOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (BlipConfig) and inputs.
- loss (
torch.FloatTensorof shape(1,), optional, returned whenreturn_lossisTrue) — Contrastive loss for image-text similarity. - logits_per_image (
torch.FloatTensorof shape(image_batch_size, text_batch_size)) — The scaled dot product scores betweenimage_embedsandtext_embeds. This represents the image-text similarity scores. - logits_per_text (
torch.FloatTensorof shape(text_batch_size, image_batch_size)) — The scaled dot product scores betweentext_embedsandimage_embeds. This represents the text-image similarity scores. - text_embeds (
torch.FloatTensorof shape(batch_size, output_dim) — The text embeddings obtained by applying the projection layer to the pooled output of BlipTextModel. - image_embeds (
torch.FloatTensorof shape(batch_size, output_dim) — The image embeddings obtained by applying the projection layer to the pooled output of BlipVisionModel. - text_model_output (
<class '~modeling_outputs.BaseModelOutputWithPooling'>.text_model_output, defaults toNone) — The output of the BlipTextModel. - vision_model_output (
<class '~modeling_outputs.BaseModelOutputWithPooling'>.vision_model_output, defaults toNone) — The output of the BlipVisionModel.
The BlipModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipModel
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilitiesget_text_features
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None ) → text_features (torch.FloatTensor of shape (batch_size, output_dim)
Parameters
- input_ids (
torch.Tensorof shape(batch_size, sequence_length), optional) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.Tensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1].
Returns
text_features (torch.FloatTensor of shape (batch_size, output_dim)
The text embeddings obtained by applying the projection layer to the pooled output of BlipTextModel.
Examples:
>>> from transformers import AutoProcessor, BlipModel
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)get_image_features
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None interpolate_pos_encoding: bool = False ) → image_features (torch.FloatTensor of shape (batch_size, output_dim)
Parameters
- pixel_values (
torch.FloatTensorof shape(batch_size, num_channels, image_size, image_size), optional) — The tensors corresponding to the input images. Pixel values can be obtained using BlipImageProcessor. See BlipImageProcessor.call() for details (BlipProcessor uses BlipImageProcessor for processing images). - interpolate_pos_encoding (
bool, defaults toFalse) — Whether to interpolate the pre-trained position encodings.
Returns
image_features (torch.FloatTensor of shape (batch_size, output_dim)
The image embeddings obtained by applying the projection layer to the pooled output of BlipVisionModel.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipModel
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)BlipTextModel
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in Attention is
all you need by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and is_decoder set to True; an
encoder_hidden_states is then expected as an input to the forward pass.
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None is_decoder: typing.Optional[bool] = False cache_position: typing.Optional[torch.Tensor] = None )
encoder_hidden_states (torch.FloatTensor, optional):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (torch.FloatTensor, optional):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:
- 1 for tokens that are not masked,
- 0 for tokens that are masked.
past_key_values (
Cache, optional): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length). use_cache (bool, optional): If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).
BlipTextLMHeadModel
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None return_logits: typing.Optional[bool] = False is_decoder: typing.Optional[bool] = True reduction: typing.Optional[str] = 'mean' cache_position: typing.Optional[torch.Tensor] = None )
encoder_hidden_states (torch.FloatTensor, optional): Sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is
configured as a decoder.
encoder_attention_mask (torch.FloatTensor, optional):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:
- 1 for tokens that are not masked,
- 0 for tokens that are masked.
labels (
torch.LongTensor, optional): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in[-100, 0, ..., config.vocab_size](seeinput_idsdocstring) Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels n[0, ..., config.vocab_size]past_key_values (Cache, optional): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length). use_cache (bool, optional): If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).
BlipVisionModel
forward
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None interpolate_pos_encoding: bool = False **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
- pixel_values (
torch.FloatTensorof shape(batch_size, num_channels, image_size, image_size), optional) — The tensors corresponding to the input images. Pixel values can be obtained using BlipImageProcessor. See BlipImageProcessor.call() for details (BlipProcessor uses BlipImageProcessor for processing images). - interpolate_pos_encoding (
bool, defaults toFalse) — Whether to interpolate the pre-trained position encodings.
Returns
transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPooling or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (BlipConfig) and inputs.
-
last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensorof shape(batch_size, hidden_size)) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BlipVisionModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
BlipForConditionalGeneration
class transformers.BlipForConditionalGeneration
< source >( config: BlipConfig )
Parameters
- config (BlipConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass
input_ids to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise,
the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption
from the text input. If no text input is provided, the decoder will start with the [BOS] token only.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( pixel_values: FloatTensor input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.LongTensor] = None labels: typing.Optional[torch.LongTensor] = None interpolate_pos_encoding: bool = False **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.models.blip.modeling_blip.BlipForConditionalGenerationModelOutput or tuple(torch.FloatTensor)
Parameters
- pixel_values (
torch.FloatTensorof shape(batch_size, num_channels, image_size, image_size)) — The tensors corresponding to the input images. Pixel values can be obtained using BlipImageProcessor. See BlipImageProcessor.call() for details (BlipProcessor uses BlipImageProcessor for processing images). - input_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]. - interpolate_pos_encoding (
bool, defaults toFalse) — Whether to interpolate the pre-trained position encodings.
Returns
transformers.models.blip.modeling_blip.BlipForConditionalGenerationModelOutput or tuple(torch.FloatTensor)
A transformers.models.blip.modeling_blip.BlipForConditionalGenerationModelOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (BlipConfig) and inputs.
-
loss (
torch.FloatTensor, optional, returned whenlabelsis provided,torch.FloatTensorof shape(1,)) — Language modeling loss from the text decoder. -
logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size), optional) — Prediction scores of the language modeling head of the text decoder model. -
image_embeds (
torch.FloatTensorof shape(batch_size, output_dim), optional) — The image embeddings obtained after applying the Vision Transformer model to the input image. -
last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional, defaults toNone) — Sequence of hidden-states at the output of the last layer of the model. -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BlipForConditionalGeneration forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "A picture of"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model(**inputs)BlipForImageTextRetrieval
class transformers.BlipForImageTextRetrieval
< source >( config: BlipConfig )
Parameters
- config (BlipConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to the image.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: LongTensor pixel_values: FloatTensor use_itm_head: typing.Optional[bool] = True attention_mask: typing.Optional[torch.LongTensor] = None interpolate_pos_encoding: bool = False **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.models.blip.modeling_blip.BlipTextVisionModelOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- pixel_values (
torch.FloatTensorof shape(batch_size, num_channels, image_size, image_size)) — The tensors corresponding to the input images. Pixel values can be obtained using BlipImageProcessor. See BlipImageProcessor.call() for details (BlipProcessor uses BlipImageProcessor for processing images). - use_itm_head (
bool, optional, defaults toTrue) — Whether or not to use the image-text matching head. - attention_mask (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- interpolate_pos_encoding (
bool, defaults toFalse) — Whether to interpolate the pre-trained position encodings.
Returns
transformers.models.blip.modeling_blip.BlipTextVisionModelOutput or tuple(torch.FloatTensor)
A transformers.models.blip.modeling_blip.BlipTextVisionModelOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (BlipConfig) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) — Language modeling loss from the text decoder. -
image_embeds (
torch.FloatTensorof shape(batch_size, output_dim)optional returned when model is initialized withwith_projection=True) — The image embeddings obtained by applying the projection layer to the pooler_output. -
last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional, defaults toNone) — Sequence of hidden-states at the output of the last layer of the model. -
hidden_states (
tuple[torch.FloatTensor, ...], optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple[torch.FloatTensor, ...], optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BlipForImageTextRetrieval forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipForImageTextRetrieval
>>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "an image of a cat"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model(**inputs)BlipForQuestionAnswering
class transformers.BlipForQuestionAnswering
< source >( config: BlipConfig )
Parameters
- config (BlipConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: LongTensor pixel_values: FloatTensor decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.LongTensor] = None labels: typing.Optional[torch.LongTensor] = None interpolate_pos_encoding: bool = False **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.models.blip.modeling_blip.BlipTextVisionModelOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- pixel_values (
torch.FloatTensorof shape(batch_size, num_channels, image_size, image_size)) — The tensors corresponding to the input images. Pixel values can be obtained using BlipImageProcessor. See BlipImageProcessor.call() for details (BlipProcessor uses BlipImageProcessor for processing images). - decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- decoder_attention_mask (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) — Mask to avoid performing attention on certain token indices. By default, a causal mask will be used, to make sure the model can only look at previous inputs in order to predict the future. - attention_mask (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]. - interpolate_pos_encoding (
bool, defaults toFalse) — Whether to interpolate the pre-trained position encodings.
Returns
transformers.models.blip.modeling_blip.BlipTextVisionModelOutput or tuple(torch.FloatTensor)
A transformers.models.blip.modeling_blip.BlipTextVisionModelOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (BlipConfig) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) — Language modeling loss from the text decoder. -
image_embeds (
torch.FloatTensorof shape(batch_size, output_dim)optional returned when model is initialized withwith_projection=True) — The image embeddings obtained by applying the projection layer to the pooler_output. -
last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional, defaults toNone) — Sequence of hidden-states at the output of the last layer of the model. -
hidden_states (
tuple[torch.FloatTensor, ...], optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple[torch.FloatTensor, ...], optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BlipForQuestionAnswering forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipForQuestionAnswering
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # training
>>> text = "How many cats are in the picture?"
>>> label = "2"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> labels = processor(text=label, return_tensors="pt").input_ids
>>> inputs["labels"] = labels
>>> outputs = model(**inputs)
>>> loss = outputs.loss
>>> loss.backward()
>>> # inference
>>> text = "How many cats are in the picture?"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model.generate(**inputs)
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
2