edangx100's picture
End of training
578c6e7
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
datasets:
  - fin
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-base-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: fin
          type: fin
          config: fin
          split: validation
          args: fin
        metrics:
          - name: Precision
            type: precision
            value: 0.9408740359897172
          - name: Recall
            type: recall
            value: 0.9682539682539683
          - name: F1
            type: f1
            value: 0.954367666232073
          - name: Accuracy
            type: accuracy
            value: 0.9930041974815111

roberta-base-finetuned-ner

This model is a fine-tuned version of roberta-base on the fin dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0331
  • Precision: 0.9409
  • Recall: 0.9683
  • F1: 0.9544
  • Accuracy: 0.9930

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 64 0.0650 0.9457 0.9206 0.9330 0.9884
No log 2.0 128 0.0366 0.9141 0.9577 0.9354 0.9924
No log 3.0 192 0.0331 0.9409 0.9683 0.9544 0.9930

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1