Security - Fine-Tuned Network Agent
Fine-tuned from mistralai/Mistral-7B-Instruct-v0.2 for autonomous network operations.
Model Details
- Agent Type: security
- Base Model: mistralai/Mistral-7B-Instruct-v0.2
- Method: LoRA fine-tuning (merged into base weights)
- Format: safetensors
- Use Case: Network incident analysis and troubleshooting
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("eduard76/security-Mistral-7B-Instruct-v0.2")
tokenizer = AutoTokenizer.from_pretrained("eduard76/security-Mistral-7B-Instruct-v0.2")
prompt = "Analyze OSPF neighbor flapping issue"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0]))
Training
- Method: LoRA (rank 16-64)
- Dataset: Network operations scenarios
- Target: Cisco network operations
License
Apache 2.0
- Downloads last month
- 3
Model tree for eduard76/security-Mistral-7B-Instruct-v0.2
Base model
mistralai/Mistral-7B-Instruct-v0.2