SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NewModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Alıştırma özeti: Grafikleri verilen üç farklı fonksiyonun bire bir ve örten olup olmadığını yatay doğru testi kullanarak belirleyiniz.',
'Alıştırma özeti: Sembolik olarak tanımlanmış fonksiyonlardan oluşan bir ifadenin birim fonksiyon olduğu bilgisiyle, bu fonksiyonların katsayılarının toplamının bulunması istenmektedir.',
'Alıştırma özeti: Bir ifadenin polinom belirtmesi için, ifadede yer alan bir parametrenin alabileceği değerler toplamının bulunması istenmektedir.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.9725, -0.7514],
# [ 0.9725, 1.0000, -0.7248],
# [-0.7514, -0.7248, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 948 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 948 samples:
sentence_0 sentence_1 label type string string int details - min: 4 tokens
- mean: 38.35 tokens
- max: 331 tokens
- min: 4 tokens
- mean: 39.97 tokens
- max: 331 tokens
- 0: ~66.67%
- 1: ~33.33%
- Samples:
sentence_0 sentence_1 label Çizilen bu doğruların her biri grafiği yalnız bir noktada kesiyor ise grafik bir fonksiyondur.Çizilen bu doğruların her biri grafiği yalnız bir noktada kesiyor ise grafik bir fonksiyondur.1Bu durumda f birim fonksiyondur.Alıştırma özeti: Verilen geometrik şekillerden hangilerinin çokgen olduğu belirlenir.0Şekildeki ABCD dörtgeninde [AC] ve [BD] dörtgenin köşegenleridir.Alıştırma özeti: Bir problem durumundan hareketle oluşturulan rasyonel ifadenin sadeleştirilmesiyle sonuca ulaşılmaktadır.0 - Loss:
ContrastiveTensionLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 3per_device_eval_batch_size: 3num_train_epochs: 25multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 3per_device_eval_batch_size: 3per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 25max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 1.5823 | 500 | 2.3231 |
| 3.1646 | 1000 | 1.9734 |
| 4.7468 | 1500 | 1.8168 |
| 6.3291 | 2000 | 1.7674 |
| 7.9114 | 2500 | 1.7083 |
| 9.4937 | 3000 | 1.6314 |
| 11.0759 | 3500 | 1.5156 |
| 12.6582 | 4000 | 1.4397 |
| 14.2405 | 4500 | 1.3676 |
| 15.8228 | 5000 | 1.3516 |
| 17.4051 | 5500 | 1.3323 |
| 18.9873 | 6000 | 1.3176 |
| 20.5696 | 6500 | 1.2924 |
| 22.1519 | 7000 | 1.2649 |
| 23.7342 | 7500 | 1.2367 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveTensionLoss
@inproceedings{carlsson2021semantic,
title={Semantic Re-tuning with Contrastive Tension},
author={Fredrik Carlsson and Amaru Cuba Gyllensten and Evangelia Gogoulou and Erik Ylip{"a}{"a} Hellqvist and Magnus Sahlgren},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=Ov_sMNau-PF}
}
- Downloads last month
- 11
Model tree for eilph/turkish_math_embedding_alibaba
Base model
Alibaba-NLP/gte-multilingual-base