ELYZA-Diffusion-Instruct-1.0-Dream-7B
Model Description
ELYZA-Diffusion-Instruct-1.0-Dream-7B is a Japanese-adapted diffusion language model released by ELYZA, Inc. It is based on the open-source diffusion LLM Dream-v0-Instruct-7B, and further pretrained and instruction-tuned on large-scale Japanese data.
The model follows a Discrete Diffusion Masked Language Model (DDMLM) formulation, where text generation is performed via iterative denoising starting from an all-MASK sequence.
In addition to Japanese continued pretraining, this model has undergone instruction tuning, enabling improved instruction-following and conversational behavior in Japanese.
For more details on the model design and training setup, please refer to our technical blog post.
Training
- Initialization: Dream-v0-Instruct-7B
- Continued pretraining on Japanese text (~62B tokens, approximate)
- Instruction tuning on Japanese instruction data (~1.8B tokens for 10 epochs)
Usage
import torch
from transformers import AutoModel, AutoTokenizer
model_path = "elyza/ELYZA-Diffusion-Instruct-1.0-Dream-7B"
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
).to("cuda").eval()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True,
)
messages = [
{"role": "user", "content": "ไปไบใฎ็ฑๆใๅใๆปใใใใฎใขใคใใขใ5ใคๆใใฆใใ ใใใ"}
]
inputs = tokenizer.apply_chat_template(
messages,
return_tensors="pt",
return_dict=True,
add_generation_prompt=True,
)
input_ids = inputs.input_ids.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
with torch.no_grad():
output = model.diffusion_generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=512,
steps=256,
temperature=0.5,
top_p=0.95,
alg="entropy",
alg_temp=0.5
)
generated = tokenizer.decode(
output.sequences[0][input_ids.size(1):],
skip_special_tokens=True,
)
print(generated)
When using a smaller number of diffusion steps (e.g., up to 8x reduction), we recommend setting
temperatureandalg_tempto 0.5 or higher to maintain generation diversity and stability.
How to Cite
@misc
{elyza2026dllm,
title = {elyza/ELYZA-Diffusion-Base-1.0-Dream-7B},
url = {https://huggingface.co/elyza/ELYZA-Diffusion-Base-1.0-Dream-7B},
author = {Tasavat Trisitichoke and Akira Sasaki and Congda Ma and Ryosuke Nakamoto and Satoshi Tohda and Shoetsu Sato and Masato Hirakawa},
year = {2026}
}
Citations
@article
{ye2025dream,
title={Dream 7B: Diffusion Large Language Models},
author={Ye, Jiacheng and Xie, Zhihui and Zheng, Lin and Gao, Jiahui and Wu, Zirui and Jiang, Xin and Li, Zhenguo and Kong, Lingpeng},
journal={arXiv preprint arXiv:2508.15487},
year={2025}
}
- Downloads last month
- 4
Model tree for elyza/ELYZA-Diffusion-Instruct-1.0-Dream-7B
Base model
Dream-org/Dream-v0-Instruct-7B