|
|
--- |
|
|
tags: |
|
|
- image-to-image |
|
|
- flux |
|
|
- lora |
|
|
- diffusers |
|
|
- template:sd-lora |
|
|
- ai-toolkit |
|
|
base_model: black-forest-labs/FLUX.1-Kontext-dev |
|
|
license: creativeml-openrail-m |
|
|
inference: |
|
|
parameters: |
|
|
width: 1024 |
|
|
height: 640 |
|
|
instance_prompt: dusk time ,blue hour |
|
|
--- |
|
|
|
|
|
# kontext-dusk-5-lora |
|
|
|
|
|
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) |
|
|
|
|
|
|
|
|
i used smaller dataset here 45 image pairs |
|
|
|
|
|
|
|
|
## Trigger words |
|
|
|
|
|
You should use `dusk time ,blue hour` to trigger the image generation. |
|
|
|
|
|
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. |
|
|
|
|
|
Weights for this model are available in Safetensors format. |
|
|
|
|
|
[Download](expert78/kontext-dusk-5-lora/tree/main) them in the Files & versions tab. |
|
|
|
|
|
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) |
|
|
|
|
|
```py |
|
|
from diffusers import AutoPipelineForText2Image |
|
|
import torch |
|
|
|
|
|
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-Kontext-dev', torch_dtype=torch.bfloat16).to('cuda') |
|
|
pipeline.load_lora_weights('expert78/kontext-dusk-5-lora', weight_name='kontext-dusk-5_000001200.safetensors') |
|
|
image = pipeline('dusk time ,blue hour').images[0] |
|
|
image.save("my_image.png") |
|
|
``` |
|
|
|
|
|
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) |
|
|
|
|
|
|