Multilingual Universal Part-of-Speech Tagging in Flair (fast model)
This is the fast multilingual universal part-of-speech tagging model that ships with Flair.
F1-Score: 92,88 (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech)
Predicts universal POS tags:
| tag | meaning | 
|---|---|
| ADJ | adjective | 
| ADP | adposition | 
| ADV | adverb | 
| AUX | auxiliary | 
| CCONJ | coordinating conjunction | 
| DET | determiner | 
| INTJ | interjection | 
| NOUN | noun | 
| NUM | numeral | 
| PART | particle | 
| PRON | pronoun | 
| PROPN | proper noun | 
| PUNCT | punctuation | 
| SCONJ | subordinating conjunction | 
| SYM | symbol | 
| VERB | verb | 
| X | other | 
Based on Flair embeddings and LSTM-CRF.
Demo: How to use in Flair
Requires: Flair (pip install flair)
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/upos-multi-fast")
# make example sentence
sentence = Sentence("Ich liebe Berlin, as they say. ")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('pos'):
    print(entity)
This yields the following output:
Span [1]: "Ich"   [β Labels: PRON (0.9999)]
Span [2]: "liebe"   [β Labels: VERB (0.9999)]
Span [3]: "Berlin"   [β Labels: PROPN (0.9997)]
Span [4]: ","   [β Labels: PUNCT (1.0)]
Span [5]: "as"   [β Labels: SCONJ (0.9991)]
Span [6]: "they"   [β Labels: PRON (0.9998)]
Span [7]: "say"   [β Labels: VERB (0.9998)]
Span [8]: "."   [β Labels: PUNCT (1.0)]
So, the words "Ich" and "they" are labeled as pronouns (PRON), while "liebe" and "say" are labeled as verbs (VERB) in the multilingual sentence "Ich liebe Berlin, as they say".
Training: Script to train this model
The following Flair script was used to train this model:
from flair.data import MultiCorpus
from flair.datasets import UD_ENGLISH, UD_GERMAN, UD_FRENCH, UD_ITALIAN, UD_POLISH, UD_DUTCH, UD_CZECH, \
    UD_DANISH, UD_SPANISH, UD_SWEDISH, UD_NORWEGIAN, UD_FINNISH
from flair.embeddings import StackedEmbeddings, FlairEmbeddings
# 1. make a multi corpus consisting of 12 UD treebanks (in_memory=False here because this corpus becomes large)
corpus = MultiCorpus([
    UD_ENGLISH(in_memory=False),
    UD_GERMAN(in_memory=False),
    UD_DUTCH(in_memory=False),
    UD_FRENCH(in_memory=False),
    UD_ITALIAN(in_memory=False),
    UD_SPANISH(in_memory=False),
    UD_POLISH(in_memory=False),
    UD_CZECH(in_memory=False),
    UD_DANISH(in_memory=False),
    UD_SWEDISH(in_memory=False),
    UD_NORWEGIAN(in_memory=False),
    UD_FINNISH(in_memory=False),
])
# 2. what tag do we want to predict?
tag_type = 'upos'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
    # contextual string embeddings, forward
    FlairEmbeddings('multi-forward-fast'),
    # contextual string embeddings, backward
    FlairEmbeddings('multi-backward-fast'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type,
                        use_crf=False)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/upos-multi-fast',
              train_with_dev=True,
              max_epochs=150)
Cite
Please cite the following paper when using this model.
@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}
Issues?
The Flair issue tracker is available here.
- Downloads last month
- 34,420
