๐ฎ๐ณ NLLB-200-Distilled-600M (English โ Mizo) โ QLoRA Fine-tune
Author: flt007โโBase: facebook/nllb-200-distilled-600M
Low-resource English โ Mizo translation model fine-tuned with QLoRA.
๐ง Overview
A lightweight NLLB derivative trained on bilingual MizoโEnglish text to
improve coverage for the under-represented Mizo language (lus_Latn).
โ๏ธ Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained('flt007/mbart-mizo-merged')
tok = AutoTokenizer.from_pretrained('flt007/mbart-mizo-merged')
text = 'We must protect our forests.'
inp = tok(text, return_tensors='pt')
out = model.generate(
**inp,
forced_bos_token_id=tok.convert_tokens_to_ids('lus_Latn'),
max_new_tokens=50
)
print(tok.decode(out[0], skip_special_tokens=True))
๐ Training Details
- Method: QLoRA (8-bit LoRA adapters)
- Dataset: Prototype (4 bilingual pairs)
- Epochs: 1
- Hardware: Google Colab T4 GPU (16 GB VRAM)
๐ฎ Next Steps
- Expand dataset to >10 000 pairs
- Multi-epoch training & BLEU/ChrF evaluation
- Bidirectional English โ Mizo model release
๐ License
Released under CC-BY-NC 4.0
โค๏ธ Acknowledgments
- Meta AI (NLLB)
- Hugging Face
- Frankie Thiak
- Downloads last month
- 6
Model tree for flt7007/mbart-mizo-merged
Base model
facebook/nllb-200-distilled-600M