|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys
|
|
|
import os
|
|
|
|
|
|
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.nn.functional as F
|
|
|
import json
|
|
|
from typing import List, Union, Optional, Tuple, Dict, Any
|
|
|
from transformers.tokenization_utils_base import BatchEncoding
|
|
|
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
|
|
from datasets import load_dataset, DatasetDict, Dataset
|
|
|
import pandas as pd
|
|
|
from torch.utils.data import Dataset as TorchDataset, DataLoader, random_split
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
from ranger21 import Ranger21
|
|
|
from tqdm.notebook import tqdm
|
|
|
from FastChemTokenizerHF import FastChemTokenizerSelfies
|
|
|
from ChemQ3MTP import ChemQ3MTPConfig, ChemQ3MTPForCausalLM
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
from transformers import TrainerCallback
|
|
|
import datetime
|
|
|
|
|
|
|
|
|
def clear_cache():
|
|
|
"""Clear PyTorch and CUDA caches"""
|
|
|
print("Clearing PyTorch and CUDA caches...")
|
|
|
if torch.cuda.is_available():
|
|
|
torch.cuda.empty_cache()
|
|
|
torch.cuda.synchronize()
|
|
|
print("CUDA cache cleared")
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
print("PyTorch cache cleared")
|
|
|
|
|
|
def clear_datasets_cache():
|
|
|
"""Clear datasets cache directory"""
|
|
|
import shutil
|
|
|
from datasets import disable_caching, enable_caching, get_cache_directory
|
|
|
try:
|
|
|
cache_dir = get_cache_directory()
|
|
|
print(f"Clearing datasets cache at: {cache_dir}")
|
|
|
if os.path.exists(cache_dir):
|
|
|
shutil.rmtree(cache_dir)
|
|
|
print("Datasets cache cleared")
|
|
|
except:
|
|
|
print("Could not clear datasets cache (may not exist)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
clear_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with open("config.json", "r") as f:
|
|
|
CONFIG = json.load(f)
|
|
|
|
|
|
TRAINING_CFG = CONFIG["training"]
|
|
|
MODEL_CFG = {k: v for k, v in CONFIG.items()
|
|
|
if k not in ["training", "generation", "model_type", "architectures"]}
|
|
|
GENERATION_CFG = CONFIG.get("generation", {})
|
|
|
|
|
|
|
|
|
BATCH_SIZE = TRAINING_CFG["batch_size"]
|
|
|
NUM_EPOCHS = TRAINING_CFG["num_epochs"]
|
|
|
LEARNING_RATE = TRAINING_CFG["learning_rate"]
|
|
|
WEIGHT_DECAY = TRAINING_CFG["weight_decay"]
|
|
|
GRAD_ACCUM_STEPS = TRAINING_CFG["gradient_accumulation_steps"]
|
|
|
TOKENIZE_BATCH_SIZE = TRAINING_CFG["tokenize_batch_size"]
|
|
|
TRAIN_SPLIT_RATIO = TRAINING_CFG["train_split_ratio"]
|
|
|
VAL_SPLIT_RATIO = TRAINING_CFG["val_split_ratio"]
|
|
|
TEST_SPLIT_RATIO = TRAINING_CFG["test_split_ratio"]
|
|
|
INCLUDE_FOR_METRICS = TRAINING_CFG.get("include_for_metrics", ["input_ids", "attention_mask", "labels"])
|
|
|
|
|
|
|
|
|
class LossLoggerCallback(TrainerCallback):
|
|
|
def __init__(self, log_file="training_losses.txt", with_timestamp=False):
|
|
|
self.log_file = log_file
|
|
|
self.with_timestamp = with_timestamp
|
|
|
with open(self.log_file, "w") as f:
|
|
|
if self.with_timestamp:
|
|
|
f.write("time\tstep\tloss\teval_loss\n")
|
|
|
else:
|
|
|
f.write("step\tloss\teval_loss\n")
|
|
|
|
|
|
def on_log(self, args, state, control, logs=None, **kwargs):
|
|
|
if logs is None:
|
|
|
return
|
|
|
step = state.global_step
|
|
|
loss = logs.get("loss")
|
|
|
eval_loss = logs.get("eval_loss")
|
|
|
|
|
|
with open(self.log_file, "a") as f:
|
|
|
if self.with_timestamp:
|
|
|
ts = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
f.write(f"{ts}\t{step}\t{loss if loss is not None else ''}\t{eval_loss if eval_loss is not None else ''}\n")
|
|
|
else:
|
|
|
f.write(f"{step}\t{loss if loss is not None else ''}\t{eval_loss if eval_loss is not None else ''}\n")
|
|
|
|
|
|
|
|
|
class CheckpointEvery10PercentCallback(TrainerCallback):
|
|
|
"""
|
|
|
Custom callback to save checkpoints at 10% intervals of total training progress
|
|
|
"""
|
|
|
def __init__(self, save_dir, total_steps):
|
|
|
self.save_dir = save_dir
|
|
|
self.total_steps = total_steps
|
|
|
self.checkpoint_intervals = []
|
|
|
|
|
|
for i in range(1, 11):
|
|
|
checkpoint_step = int(total_steps * i * 0.1)
|
|
|
self.checkpoint_intervals.append(checkpoint_step)
|
|
|
self.saved_checkpoints = set()
|
|
|
print(f"Checkpoint intervals: {self.checkpoint_intervals}")
|
|
|
|
|
|
def on_step_end(self, args, state, control, **kwargs):
|
|
|
current_step = state.global_step
|
|
|
|
|
|
|
|
|
for checkpoint_step in self.checkpoint_intervals:
|
|
|
if current_step == checkpoint_step and checkpoint_step not in self.saved_checkpoints:
|
|
|
checkpoint_dir = f"{self.save_dir}/checkpoint_10percent_{current_step}"
|
|
|
print(f"Saving 10% progress checkpoint at step {current_step} to {checkpoint_dir}")
|
|
|
|
|
|
|
|
|
model = kwargs.get('model')
|
|
|
tokenizer = kwargs.get('processing_class')
|
|
|
|
|
|
if model is not None:
|
|
|
model.save_pretrained(checkpoint_dir)
|
|
|
if tokenizer is not None:
|
|
|
tokenizer.save_pretrained(checkpoint_dir)
|
|
|
|
|
|
|
|
|
if hasattr(kwargs.get('trainer'), 'save_state'):
|
|
|
kwargs['trainer'].save_state()
|
|
|
|
|
|
self.saved_checkpoints.add(checkpoint_step)
|
|
|
print(f"Checkpoint saved at step {current_step} ({current_step/self.total_steps*100:.1f}% completion)")
|
|
|
break
|
|
|
|
|
|
|
|
|
def tokenize_function(examples, tokenizer, max_length):
|
|
|
"""Tokenize function defined outside main to avoid closure issues"""
|
|
|
batch_results = {"input_ids": [], "attention_mask": [], "labels": []}
|
|
|
smiles_list = examples['SELFIES'] if isinstance(examples['SELFIES'], list) else [examples['SELFIES']]
|
|
|
for smiles in smiles_list:
|
|
|
tokenized = tokenizer(
|
|
|
smiles,
|
|
|
truncation=True,
|
|
|
padding=False,
|
|
|
max_length=max_length,
|
|
|
return_tensors=None,
|
|
|
add_special_tokens=True
|
|
|
)
|
|
|
input_ids = tokenized["input_ids"]
|
|
|
attention_mask = tokenized["attention_mask"]
|
|
|
labels = input_ids.copy()
|
|
|
batch_results["input_ids"].append(input_ids)
|
|
|
batch_results["attention_mask"].append(attention_mask)
|
|
|
batch_results["labels"].append(labels)
|
|
|
return batch_results
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
|
clear_cache()
|
|
|
|
|
|
|
|
|
tokenizer = FastChemTokenizerSelfies.from_pretrained("../selftok_core")
|
|
|
|
|
|
out = tokenizer("[C] [=C] [Branch1]", return_tensors="pt")
|
|
|
print(out.input_ids)
|
|
|
print(out.attention_mask)
|
|
|
out = out.to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
print(out.input_ids.device)
|
|
|
|
|
|
|
|
|
config = ChemQ3MTPConfig(
|
|
|
vocab_size=len(tokenizer),
|
|
|
bos_token_id=tokenizer.bos_token_id,
|
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
|
**MODEL_CFG
|
|
|
)
|
|
|
|
|
|
model = ChemQ3MTPForCausalLM(config)
|
|
|
|
|
|
def count_parameters(model):
|
|
|
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
|
|
|
|
print(f"Enhanced model has {count_parameters(model):,} trainable parameters.")
|
|
|
|
|
|
batch_size, seq_len = 2, 32
|
|
|
dummy_input = torch.randint(
|
|
|
low=0,
|
|
|
high=len(tokenizer),
|
|
|
size=(batch_size, seq_len),
|
|
|
dtype=torch.long,
|
|
|
)
|
|
|
with torch.no_grad():
|
|
|
outputs = model(dummy_input)
|
|
|
logits = outputs.logits
|
|
|
print(f"Input shape: {dummy_input.shape}")
|
|
|
print(f"Logits shape: {logits.shape}")
|
|
|
|
|
|
print("Loading dataset...")
|
|
|
|
|
|
dataset = load_dataset(
|
|
|
'csv',
|
|
|
data_files='../data/chunk_1.csv',
|
|
|
split='train'
|
|
|
)
|
|
|
|
|
|
print(f"Dataset loaded with {len(dataset)} samples")
|
|
|
|
|
|
|
|
|
print("First few samples from dataset:")
|
|
|
for i in range(min(3, len(dataset))):
|
|
|
sample = dataset[i]
|
|
|
print(f"Sample {i}: {sample}")
|
|
|
if 'SELFIES' in sample:
|
|
|
print(f"First SELFIES: {sample['SELFIES']}")
|
|
|
break
|
|
|
|
|
|
print("Shuffling and splitting dataset...")
|
|
|
|
|
|
dataset = dataset.shuffle(seed=42)
|
|
|
|
|
|
|
|
|
total_lines = len(dataset)
|
|
|
test_size = int(TEST_SPLIT_RATIO * total_lines)
|
|
|
val_size = int(VAL_SPLIT_RATIO * total_lines)
|
|
|
train_size = total_lines - test_size - val_size
|
|
|
|
|
|
print(f"Total samples: {total_lines}")
|
|
|
print(f"Split sizes - train: {train_size}, val: {val_size}, test: {test_size}")
|
|
|
|
|
|
|
|
|
train_dataset = dataset.select(range(0, train_size))
|
|
|
val_dataset = dataset.select(range(train_size, train_size + val_size))
|
|
|
test_dataset = dataset.select(range(train_size + val_size, total_lines))
|
|
|
|
|
|
print(f"Dataset split: train={len(train_dataset)}, val={len(val_dataset)}, test={len(test_dataset)}")
|
|
|
|
|
|
|
|
|
print("Tokenizing datasets...")
|
|
|
|
|
|
|
|
|
def tokenize_train(examples):
|
|
|
return tokenize_function(examples, tokenizer, MODEL_CFG["max_position_embeddings"])
|
|
|
|
|
|
def tokenize_val(examples):
|
|
|
return tokenize_function(examples, tokenizer, MODEL_CFG["max_position_embeddings"])
|
|
|
|
|
|
train_dataset = train_dataset.map(
|
|
|
tokenize_train,
|
|
|
batched=True,
|
|
|
batch_size=TOKENIZE_BATCH_SIZE,
|
|
|
remove_columns=["SELFIES"],
|
|
|
desc="Tokenizing train dataset"
|
|
|
)
|
|
|
val_dataset = val_dataset.map(
|
|
|
tokenize_val,
|
|
|
batched=True,
|
|
|
batch_size=TOKENIZE_BATCH_SIZE,
|
|
|
remove_columns=["SELFIES"],
|
|
|
desc="Tokenizing val dataset"
|
|
|
)
|
|
|
|
|
|
class EnhancedDataCollator:
|
|
|
def __init__(self, tokenizer, pad_to_multiple_of=8):
|
|
|
self.tokenizer = tokenizer
|
|
|
self.pad_to_multiple_of = pad_to_multiple_of
|
|
|
def __call__(self, features):
|
|
|
max_length = max(len(f["input_ids"]) for f in features)
|
|
|
if self.pad_to_multiple_of:
|
|
|
max_length = ((max_length + self.pad_to_multiple_of - 1) // self.pad_to_multiple_of) * self.pad_to_multiple_of
|
|
|
batch = {"input_ids": [], "attention_mask": [], "labels": []}
|
|
|
for feature in features:
|
|
|
input_ids = feature["input_ids"]
|
|
|
attention_mask = feature["attention_mask"]
|
|
|
labels = feature["labels"]
|
|
|
padding_length = max_length - len(input_ids)
|
|
|
padded_input_ids = input_ids + [self.tokenizer.pad_token_id] * padding_length
|
|
|
padded_attention_mask = attention_mask + [0] * padding_length
|
|
|
padded_labels = labels + [-100] * padding_length
|
|
|
batch["input_ids"].append(padded_input_ids)
|
|
|
batch["attention_mask"].append(padded_attention_mask)
|
|
|
batch["labels"].append(padded_labels)
|
|
|
batch = {key: torch.tensor(values, dtype=torch.long) for key, values in batch.items()}
|
|
|
return batch
|
|
|
|
|
|
data_collator = EnhancedDataCollator(tokenizer, pad_to_multiple_of=8)
|
|
|
|
|
|
def create_enhanced_optimizer(model_params):
|
|
|
num_batches_per_epoch = len(train_dataset) // BATCH_SIZE
|
|
|
optimizer_params = {
|
|
|
'lr': LEARNING_RATE,
|
|
|
'weight_decay': WEIGHT_DECAY,
|
|
|
'use_adabelief': True,
|
|
|
'use_cheb': False,
|
|
|
'use_warmup': True,
|
|
|
'use_madgrad': True,
|
|
|
'num_epochs': NUM_EPOCHS,
|
|
|
'using_gc': True,
|
|
|
'warmdown_active': True,
|
|
|
'num_batches_per_epoch': num_batches_per_epoch
|
|
|
}
|
|
|
return Ranger21(model_params, **optimizer_params)
|
|
|
|
|
|
from torch.optim.lr_scheduler import LambdaLR
|
|
|
class EnhancedCustomTrainer(Trainer):
|
|
|
def create_optimizer(self):
|
|
|
self.optimizer = create_enhanced_optimizer(self.model.parameters())
|
|
|
return self.optimizer
|
|
|
def create_scheduler(self, num_training_steps, optimizer=None):
|
|
|
if optimizer is None:
|
|
|
optimizer = self.optimizer
|
|
|
self.lr_scheduler = LambdaLR(optimizer, lr_lambda=lambda step: 1.0)
|
|
|
return self.lr_scheduler
|
|
|
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
|
|
outputs = model(**inputs)
|
|
|
loss = outputs.loss
|
|
|
return (loss, outputs) if return_outputs else loss
|
|
|
|
|
|
steps_per_epoch = len(train_dataset) // BATCH_SIZE
|
|
|
total_steps = steps_per_epoch * NUM_EPOCHS
|
|
|
|
|
|
training_args = TrainingArguments(
|
|
|
output_dir='./chemq3minipret',
|
|
|
max_steps=total_steps,
|
|
|
per_device_train_batch_size=BATCH_SIZE,
|
|
|
per_device_eval_batch_size=BATCH_SIZE,
|
|
|
gradient_accumulation_steps=GRAD_ACCUM_STEPS,
|
|
|
logging_dir='./gptlo-1',
|
|
|
logging_strategy="steps",
|
|
|
logging_steps=max(1, steps_per_epoch // 4),
|
|
|
eval_strategy="steps",
|
|
|
eval_steps=max(1, steps_per_epoch // 4),
|
|
|
save_strategy="steps",
|
|
|
save_steps=steps_per_epoch,
|
|
|
save_total_limit=1,
|
|
|
dataloader_num_workers=0,
|
|
|
dataloader_pin_memory=False,
|
|
|
remove_unused_columns=False,
|
|
|
prediction_loss_only=False,
|
|
|
fp16=torch.cuda.is_available(),
|
|
|
gradient_checkpointing=True,
|
|
|
dataloader_drop_last=True,
|
|
|
report_to=None,
|
|
|
include_for_metrics=INCLUDE_FOR_METRICS,
|
|
|
)
|
|
|
|
|
|
print("Initializing enhanced trainer with MTP capabilities...")
|
|
|
trainer = EnhancedCustomTrainer(
|
|
|
model=model,
|
|
|
args=training_args,
|
|
|
train_dataset=train_dataset,
|
|
|
eval_dataset=val_dataset,
|
|
|
data_collator=data_collator,
|
|
|
processing_class=tokenizer,
|
|
|
callbacks=[
|
|
|
LossLoggerCallback("training_losses.txt", with_timestamp=True),
|
|
|
CheckpointEvery10PercentCallback("./chemq3minipret", total_steps)
|
|
|
]
|
|
|
)
|
|
|
|
|
|
model.set_mtp_training(True)
|
|
|
print(" MTP training mode enabled")
|
|
|
|
|
|
print("Starting enhanced training with MTP and Horizon Loss...")
|
|
|
try:
|
|
|
print("\n Phase 1: Warmup with standard Causal LM...")
|
|
|
model.set_mtp_training(False)
|
|
|
warmup_steps = max(1, total_steps // 5)
|
|
|
|
|
|
|
|
|
trainer.args.max_steps = warmup_steps
|
|
|
trainer.train()
|
|
|
print(f"\n Phase 1 completed. Warmup with {warmup_steps} steps finished.")
|
|
|
|
|
|
print(f"\n Phase 2: Full MTP + Horizon Loss training...")
|
|
|
print(f"Total training steps: {total_steps}")
|
|
|
print(f"Training will save checkpoints at 10% intervals:")
|
|
|
for i in range(1, 11):
|
|
|
checkpoint_step = int(total_steps * i * 0.1)
|
|
|
print(f" - {i*10}%: Step {checkpoint_step}")
|
|
|
|
|
|
model.set_mtp_training(True)
|
|
|
|
|
|
trainer.args.max_steps = total_steps
|
|
|
trainer.train(resume_from_checkpoint=True)
|
|
|
print("Enhanced training completed successfully!")
|
|
|
trainer.save_model("./enhanced-qwen3-final")
|
|
|
tokenizer.save_pretrained("./enhanced-qwen3-final")
|
|
|
training_config = {
|
|
|
"model_type": "ChemQ3MTPForCausalLM",
|
|
|
"num_future_tokens": 3,
|
|
|
"horizon_loss_enabled": True,
|
|
|
"mtp_head_enabled": True,
|
|
|
"training_phases": ["causal_lm_warmup", "mtp_horizon_training"],
|
|
|
"total_parameters": count_parameters(model),
|
|
|
}
|
|
|
config_path = "./enhanced-qwen3-final/training_config.json"
|
|
|
with open(config_path, "w") as f:
|
|
|
json.dump(training_config, f, indent=2)
|
|
|
print(f" Enhanced model, tokenizer, and config saved!")
|
|
|
except Exception as e:
|
|
|
print(f"Enhanced training failed with error: {e}")
|
|
|
import traceback
|
|
|
traceback.print_exc()
|
|
|
return
|
|
|
|
|
|
print("\nmTesting enhanced generation capabilities...")
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
model.to(device)
|
|
|
model.eval()
|
|
|
try:
|
|
|
print("\n--- Standard Generation Test ---")
|
|
|
input_ids = tokenizer("<s> [C]", return_tensors="pt").input_ids.to(device)
|
|
|
with torch.no_grad():
|
|
|
model.set_mtp_training(False)
|
|
|
gen = model.generate(
|
|
|
input_ids,
|
|
|
max_length=25,
|
|
|
top_k=50,
|
|
|
top_p=0.9,
|
|
|
temperature=1.0,
|
|
|
do_sample=True,
|
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
|
num_return_sequences=3,
|
|
|
)
|
|
|
for i, sequence in enumerate(gen):
|
|
|
result = tokenizer.decode(sequence, skip_special_tokens=True)
|
|
|
print(f"Generated SELFIES {i+1}: {result}")
|
|
|
print("\n--- MTP Analysis Test ---")
|
|
|
test_smiles = "[C]"
|
|
|
test_input = tokenizer(test_smiles, return_tensors="pt", add_special_tokens=True).to(device)
|
|
|
test_input = {k: v for k, v in test_input.items() if k != 'token_type_ids'}
|
|
|
with torch.no_grad():
|
|
|
outputs = model(**test_input)
|
|
|
if hasattr(model, 'mtp_head') and hasattr(model.mtp_head, 'prediction_heads'):
|
|
|
hidden_states = model.model(test_input['input_ids']).last_hidden_state
|
|
|
mtp_outputs = model.mtp_head(hidden_states)
|
|
|
print(f"Input SELFIES: {test_smiles}")
|
|
|
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(test_input['input_ids'][0].tolist())}")
|
|
|
for i, (key, logits) in enumerate(mtp_outputs.items()):
|
|
|
top_tokens = torch.topk(logits[0], k=3, dim=-1)
|
|
|
print(f"\n{key} predictions:")
|
|
|
for pos in range(min(5, logits.size(1))):
|
|
|
pos_preds = []
|
|
|
for j in range(3):
|
|
|
token_id = top_tokens.indices[pos, j].item()
|
|
|
prob = torch.softmax(logits[0, pos], dim=-1)[token_id].item()
|
|
|
token = tokenizer.id_to_token.get(token_id, '<UNK>')
|
|
|
pos_preds.append(f"{token}({prob:.3f})")
|
|
|
print(f" Position {pos}: {', '.join(pos_preds)}")
|
|
|
print("\nEnhanced generation tests completed!")
|
|
|
except Exception as e:
|
|
|
print(f"Enhanced generation test failed: {e}")
|
|
|
import traceback
|
|
|
traceback.print_exc()
|
|
|
|
|
|
print("\nEnhanced Model Analysis:")
|
|
|
print(f"Total parameters: {count_parameters(model):,}")
|
|
|
mtp_params = sum(p.numel() for p in model.mtp_head.parameters() if p.requires_grad)
|
|
|
horizon_params = sum(p.numel() for p in model.horizon_loss.parameters() if p.requires_grad)
|
|
|
base_params = count_parameters(model) - mtp_params - horizon_params
|
|
|
print(f"Base model parameters: {base_params:,}")
|
|
|
print(f"MTP head parameters: {mtp_params:,}")
|
|
|
print(f"Horizon loss parameters: {horizon_params:,}")
|
|
|
print(f"Enhancement overhead: {((mtp_params + horizon_params) / base_params * 100):.2f}%")
|
|
|
print(f"\n Enhanced Model Architecture:")
|
|
|
print(f"- Base Model: Qwen2 with {config.num_hidden_layers} layers")
|
|
|
print(f"- Hidden Size: {config.hidden_size}")
|
|
|
print(f"- Attention Heads: {config.num_attention_heads}")
|
|
|
print(f"- Vocab Size: {config.vocab_size}")
|
|
|
print(f"- MTP Future Tokens: {model.mtp_head.num_future_tokens}")
|
|
|
print(f"- Horizon Loss Weights: Learnable")
|
|
|
print(f"- Training Mode: {'MTP + Horizon Loss' if model.use_mtp_training else 'Standard Causal LM'}")
|
|
|
print("\n Enhanced training pipeline completed successfully!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
main() |