ChemMiniQ3-SAbRLo / train_withmtp.py
gbyuvd's picture
Update generation test and upload continue from checkpoint train
7fd900a verified
# ========================
# Train with NTP + MTP
# Updated for ChemQ3MTP structure
# by gbyuvd
# ========================
# train_withmtp.py
import sys
import os
# Add the current directory to Python path so it can find your modules
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
from typing import List, Union, Optional, Tuple, Dict, Any
from transformers.tokenization_utils_base import BatchEncoding
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import load_dataset, DatasetDict, Dataset
import pandas as pd
from torch.utils.data import Dataset as TorchDataset, DataLoader, random_split
from sklearn.model_selection import train_test_split
from ranger21 import Ranger21
from tqdm.notebook import tqdm
from FastChemTokenizerHF import FastChemTokenizerSelfies
from ChemQ3MTP import ChemQ3MTPConfig, ChemQ3MTPForCausalLM # This should now work
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from transformers import TrainerCallback
import datetime
# Clear cache functions
def clear_cache():
"""Clear PyTorch and CUDA caches"""
print("Clearing PyTorch and CUDA caches...")
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
print("CUDA cache cleared")
torch.backends.cudnn.benchmark = True # Enable cuDNN optimization
print("PyTorch cache cleared")
def clear_datasets_cache():
"""Clear datasets cache directory"""
import shutil
from datasets import disable_caching, enable_caching, get_cache_directory
try:
cache_dir = get_cache_directory()
print(f"Clearing datasets cache at: {cache_dir}")
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
print("Datasets cache cleared")
except:
print("Could not clear datasets cache (may not exist)")
# ==============================
# Clear caches before starting
# ==============================
clear_cache()
# clear_datasets_cache()
# ==============================
# Load external configuration
# ==============================
with open("config.json", "r") as f:
CONFIG = json.load(f)
TRAINING_CFG = CONFIG["training"]
MODEL_CFG = {k: v for k, v in CONFIG.items()
if k not in ["training", "generation", "model_type", "architectures"]}
GENERATION_CFG = CONFIG.get("generation", {})
# Training params
BATCH_SIZE = TRAINING_CFG["batch_size"]
NUM_EPOCHS = TRAINING_CFG["num_epochs"]
LEARNING_RATE = TRAINING_CFG["learning_rate"]
WEIGHT_DECAY = TRAINING_CFG["weight_decay"]
GRAD_ACCUM_STEPS = TRAINING_CFG["gradient_accumulation_steps"]
TOKENIZE_BATCH_SIZE = TRAINING_CFG["tokenize_batch_size"]
TRAIN_SPLIT_RATIO = TRAINING_CFG["train_split_ratio"]
VAL_SPLIT_RATIO = TRAINING_CFG["val_split_ratio"]
TEST_SPLIT_RATIO = TRAINING_CFG["test_split_ratio"]
INCLUDE_FOR_METRICS = TRAINING_CFG.get("include_for_metrics", ["input_ids", "attention_mask", "labels"])
# ==============================
class LossLoggerCallback(TrainerCallback):
def __init__(self, log_file="training_losses.txt", with_timestamp=False):
self.log_file = log_file
self.with_timestamp = with_timestamp
with open(self.log_file, "w") as f:
if self.with_timestamp:
f.write("time\tstep\tloss\teval_loss\n")
else:
f.write("step\tloss\teval_loss\n")
def on_log(self, args, state, control, logs=None, **kwargs):
if logs is None:
return
step = state.global_step
loss = logs.get("loss")
eval_loss = logs.get("eval_loss")
with open(self.log_file, "a") as f:
if self.with_timestamp:
ts = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
f.write(f"{ts}\t{step}\t{loss if loss is not None else ''}\t{eval_loss if eval_loss is not None else ''}\n")
else:
f.write(f"{step}\t{loss if loss is not None else ''}\t{eval_loss if eval_loss is not None else ''}\n")
class CheckpointEvery10PercentCallback(TrainerCallback):
"""
Custom callback to save checkpoints at 10% intervals of total training progress
"""
def __init__(self, save_dir, total_steps):
self.save_dir = save_dir
self.total_steps = total_steps
self.checkpoint_intervals = []
# Calculate steps for 10% intervals (10%, 20%, 30%, ..., 100%)
for i in range(1, 11):
checkpoint_step = int(total_steps * i * 0.1)
self.checkpoint_intervals.append(checkpoint_step)
self.saved_checkpoints = set()
print(f"Checkpoint intervals: {self.checkpoint_intervals}")
def on_step_end(self, args, state, control, **kwargs):
current_step = state.global_step
# Check if we've reached a 10% checkpoint
for checkpoint_step in self.checkpoint_intervals:
if current_step == checkpoint_step and checkpoint_step not in self.saved_checkpoints:
checkpoint_dir = f"{self.save_dir}/checkpoint_10percent_{current_step}"
print(f"Saving 10% progress checkpoint at step {current_step} to {checkpoint_dir}")
# Save model and tokenizer
model = kwargs.get('model')
tokenizer = kwargs.get('processing_class') # or kwargs.get('tokenizer')
if model is not None:
model.save_pretrained(checkpoint_dir)
if tokenizer is not None:
tokenizer.save_pretrained(checkpoint_dir)
# Also save training state
if hasattr(kwargs.get('trainer'), 'save_state'):
kwargs['trainer'].save_state()
self.saved_checkpoints.add(checkpoint_step)
print(f"Checkpoint saved at step {current_step} ({current_step/self.total_steps*100:.1f}% completion)")
break # Only save one checkpoint per step
def tokenize_function(examples, tokenizer, max_length):
"""Tokenize function defined outside main to avoid closure issues"""
batch_results = {"input_ids": [], "attention_mask": [], "labels": []}
smiles_list = examples['SELFIES'] if isinstance(examples['SELFIES'], list) else [examples['SELFIES']]
for smiles in smiles_list:
tokenized = tokenizer(
smiles,
truncation=True,
padding=False,
max_length=max_length,
return_tensors=None,
add_special_tokens=True
)
input_ids = tokenized["input_ids"]
attention_mask = tokenized["attention_mask"]
labels = input_ids.copy()
batch_results["input_ids"].append(input_ids)
batch_results["attention_mask"].append(attention_mask)
batch_results["labels"].append(labels)
return batch_results
def main():
# Clear cache at the beginning of main function too
clear_cache()
# --- Load the tokenizer ---
tokenizer = FastChemTokenizerSelfies.from_pretrained("../selftok_core")
out = tokenizer("[C] [=C] [Branch1]", return_tensors="pt")
print(out.input_ids)
print(out.attention_mask)
out = out.to("cuda" if torch.cuda.is_available() else "cpu")
print(out.input_ids.device)
# --- Define config ---
config = ChemQ3MTPConfig( # Updated to use ChemQ3MTPConfig
vocab_size=len(tokenizer),
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
**MODEL_CFG
)
model = ChemQ3MTPForCausalLM(config) # Updated to use the new model class
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Enhanced model has {count_parameters(model):,} trainable parameters.")
batch_size, seq_len = 2, 32
dummy_input = torch.randint(
low=0,
high=len(tokenizer),
size=(batch_size, seq_len),
dtype=torch.long,
)
with torch.no_grad():
outputs = model(dummy_input)
logits = outputs.logits
print(f"Input shape: {dummy_input.shape}")
print(f"Logits shape: {logits.shape}")
print("Loading dataset...")
# Load dataset without streaming
dataset = load_dataset(
'csv',
data_files='../data/chunk_1.csv',
split='train'
)
print(f"Dataset loaded with {len(dataset)} samples")
# Verify the correct file is loaded by checking first few samples
print("First few samples from dataset:")
for i in range(min(3, len(dataset))):
sample = dataset[i]
print(f"Sample {i}: {sample}")
if 'SELFIES' in sample:
print(f"First SELFIES: {sample['SELFIES']}")
break
print("Shuffling and splitting dataset...")
# Shuffle the entire dataset first
dataset = dataset.shuffle(seed=42)
# Calculate split sizes
total_lines = len(dataset)
test_size = int(TEST_SPLIT_RATIO * total_lines)
val_size = int(VAL_SPLIT_RATIO * total_lines)
train_size = total_lines - test_size - val_size
print(f"Total samples: {total_lines}")
print(f"Split sizes - train: {train_size}, val: {val_size}, test: {test_size}")
# Create splits using select
train_dataset = dataset.select(range(0, train_size))
val_dataset = dataset.select(range(train_size, train_size + val_size))
test_dataset = dataset.select(range(train_size + val_size, total_lines))
print(f"Dataset split: train={len(train_dataset)}, val={len(val_dataset)}, test={len(test_dataset)}")
# Tokenize datasets using batched mapping with explicit parameters
print("Tokenizing datasets...")
# Define tokenize function with all parameters passed explicitly
def tokenize_train(examples):
return tokenize_function(examples, tokenizer, MODEL_CFG["max_position_embeddings"])
def tokenize_val(examples):
return tokenize_function(examples, tokenizer, MODEL_CFG["max_position_embeddings"])
train_dataset = train_dataset.map(
tokenize_train,
batched=True,
batch_size=TOKENIZE_BATCH_SIZE,
remove_columns=["SELFIES"],
desc="Tokenizing train dataset"
)
val_dataset = val_dataset.map(
tokenize_val,
batched=True,
batch_size=TOKENIZE_BATCH_SIZE,
remove_columns=["SELFIES"],
desc="Tokenizing val dataset"
)
class EnhancedDataCollator:
def __init__(self, tokenizer, pad_to_multiple_of=8):
self.tokenizer = tokenizer
self.pad_to_multiple_of = pad_to_multiple_of
def __call__(self, features):
max_length = max(len(f["input_ids"]) for f in features)
if self.pad_to_multiple_of:
max_length = ((max_length + self.pad_to_multiple_of - 1) // self.pad_to_multiple_of) * self.pad_to_multiple_of
batch = {"input_ids": [], "attention_mask": [], "labels": []}
for feature in features:
input_ids = feature["input_ids"]
attention_mask = feature["attention_mask"]
labels = feature["labels"]
padding_length = max_length - len(input_ids)
padded_input_ids = input_ids + [self.tokenizer.pad_token_id] * padding_length
padded_attention_mask = attention_mask + [0] * padding_length
padded_labels = labels + [-100] * padding_length
batch["input_ids"].append(padded_input_ids)
batch["attention_mask"].append(padded_attention_mask)
batch["labels"].append(padded_labels)
batch = {key: torch.tensor(values, dtype=torch.long) for key, values in batch.items()}
return batch
data_collator = EnhancedDataCollator(tokenizer, pad_to_multiple_of=8)
def create_enhanced_optimizer(model_params):
num_batches_per_epoch = len(train_dataset) // BATCH_SIZE
optimizer_params = {
'lr': LEARNING_RATE,
'weight_decay': WEIGHT_DECAY,
'use_adabelief': True,
'use_cheb': False,
'use_warmup': True,
'use_madgrad': True,
'num_epochs': NUM_EPOCHS,
'using_gc': True,
'warmdown_active': True,
'num_batches_per_epoch': num_batches_per_epoch
}
return Ranger21(model_params, **optimizer_params)
from torch.optim.lr_scheduler import LambdaLR
class EnhancedCustomTrainer(Trainer):
def create_optimizer(self):
self.optimizer = create_enhanced_optimizer(self.model.parameters())
return self.optimizer
def create_scheduler(self, num_training_steps, optimizer=None):
if optimizer is None:
optimizer = self.optimizer
self.lr_scheduler = LambdaLR(optimizer, lr_lambda=lambda step: 1.0)
return self.lr_scheduler
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
outputs = model(**inputs)
loss = outputs.loss
return (loss, outputs) if return_outputs else loss
steps_per_epoch = len(train_dataset) // BATCH_SIZE
total_steps = steps_per_epoch * NUM_EPOCHS
training_args = TrainingArguments(
output_dir='./chemq3minipret',
max_steps=total_steps,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
gradient_accumulation_steps=GRAD_ACCUM_STEPS,
logging_dir='./gptlo-1',
logging_strategy="steps",
logging_steps=max(1, steps_per_epoch // 4),
eval_strategy="steps",
eval_steps=max(1, steps_per_epoch // 4),
save_strategy="steps",
save_steps=steps_per_epoch, # Save every epoch
save_total_limit=1,
dataloader_num_workers=0,
dataloader_pin_memory=False,
remove_unused_columns=False,
prediction_loss_only=False,
fp16=torch.cuda.is_available(),
gradient_checkpointing=True,
dataloader_drop_last=True,
report_to=None,
include_for_metrics=INCLUDE_FOR_METRICS,
)
print("Initializing enhanced trainer with MTP capabilities...")
trainer = EnhancedCustomTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=data_collator,
processing_class=tokenizer,
callbacks=[
LossLoggerCallback("training_losses.txt", with_timestamp=True),
CheckpointEvery10PercentCallback("./chemq3minipret", total_steps)
]
)
model.set_mtp_training(True)
print(" MTP training mode enabled")
print("Starting enhanced training with MTP and Horizon Loss...")
try:
print("\n Phase 1: Warmup with standard Causal LM...")
model.set_mtp_training(False)
warmup_steps = max(1, total_steps // 5)
# Update trainer args for warmup phase
trainer.args.max_steps = warmup_steps
trainer.train()
print(f"\n Phase 1 completed. Warmup with {warmup_steps} steps finished.")
print(f"\n Phase 2: Full MTP + Horizon Loss training...")
print(f"Total training steps: {total_steps}")
print(f"Training will save checkpoints at 10% intervals:")
for i in range(1, 11):
checkpoint_step = int(total_steps * i * 0.1)
print(f" - {i*10}%: Step {checkpoint_step}")
model.set_mtp_training(True)
# Reset max steps to total for the full training phase
trainer.args.max_steps = total_steps
trainer.train(resume_from_checkpoint=True)
print("Enhanced training completed successfully!")
trainer.save_model("./enhanced-qwen3-final")
tokenizer.save_pretrained("./enhanced-qwen3-final")
training_config = {
"model_type": "ChemQ3MTPForCausalLM",
"num_future_tokens": 3,
"horizon_loss_enabled": True,
"mtp_head_enabled": True,
"training_phases": ["causal_lm_warmup", "mtp_horizon_training"],
"total_parameters": count_parameters(model),
}
config_path = "./enhanced-qwen3-final/training_config.json"
with open(config_path, "w") as f:
json.dump(training_config, f, indent=2)
print(f" Enhanced model, tokenizer, and config saved!")
except Exception as e:
print(f"Enhanced training failed with error: {e}")
import traceback
traceback.print_exc()
return
print("\nmTesting enhanced generation capabilities...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
try:
print("\n--- Standard Generation Test ---")
input_ids = tokenizer("<s> [C]", return_tensors="pt").input_ids.to(device)
with torch.no_grad():
model.set_mtp_training(False)
gen = model.generate(
input_ids,
max_length=25,
top_k=50,
top_p=0.9,
temperature=1.0,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
num_return_sequences=3,
)
for i, sequence in enumerate(gen):
result = tokenizer.decode(sequence, skip_special_tokens=True)
print(f"Generated SELFIES {i+1}: {result}")
print("\n--- MTP Analysis Test ---")
test_smiles = "[C]"
test_input = tokenizer(test_smiles, return_tensors="pt", add_special_tokens=True).to(device)
test_input = {k: v for k, v in test_input.items() if k != 'token_type_ids'} # Remove token_type_ids
with torch.no_grad():
outputs = model(**test_input)
if hasattr(model, 'mtp_head') and hasattr(model.mtp_head, 'prediction_heads'):
hidden_states = model.model(test_input['input_ids']).last_hidden_state
mtp_outputs = model.mtp_head(hidden_states)
print(f"Input SELFIES: {test_smiles}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(test_input['input_ids'][0].tolist())}")
for i, (key, logits) in enumerate(mtp_outputs.items()):
top_tokens = torch.topk(logits[0], k=3, dim=-1)
print(f"\n{key} predictions:")
for pos in range(min(5, logits.size(1))):
pos_preds = []
for j in range(3):
token_id = top_tokens.indices[pos, j].item()
prob = torch.softmax(logits[0, pos], dim=-1)[token_id].item()
token = tokenizer.id_to_token.get(token_id, '<UNK>')
pos_preds.append(f"{token}({prob:.3f})")
print(f" Position {pos}: {', '.join(pos_preds)}")
print("\nEnhanced generation tests completed!")
except Exception as e:
print(f"Enhanced generation test failed: {e}")
import traceback
traceback.print_exc()
print("\nEnhanced Model Analysis:")
print(f"Total parameters: {count_parameters(model):,}")
mtp_params = sum(p.numel() for p in model.mtp_head.parameters() if p.requires_grad)
horizon_params = sum(p.numel() for p in model.horizon_loss.parameters() if p.requires_grad)
base_params = count_parameters(model) - mtp_params - horizon_params
print(f"Base model parameters: {base_params:,}")
print(f"MTP head parameters: {mtp_params:,}")
print(f"Horizon loss parameters: {horizon_params:,}")
print(f"Enhancement overhead: {((mtp_params + horizon_params) / base_params * 100):.2f}%")
print(f"\n Enhanced Model Architecture:")
print(f"- Base Model: Qwen2 with {config.num_hidden_layers} layers") # Updated this line
print(f"- Hidden Size: {config.hidden_size}")
print(f"- Attention Heads: {config.num_attention_heads}")
print(f"- Vocab Size: {config.vocab_size}")
print(f"- MTP Future Tokens: {model.mtp_head.num_future_tokens}")
print(f"- Horizon Loss Weights: Learnable")
print(f"- Training Mode: {'MTP + Horizon Loss' if model.use_mtp_training else 'Standard Causal LM'}")
print("\n Enhanced training pipeline completed successfully!")
if __name__ == "__main__":
main()