File size: 2,141 Bytes
bc82ba3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
datasets: gimarchetti/so101-winnie-us7
library_name: lerobot
license: apache-2.0
model_name: pi05
pipeline_tag: robotics
tags:
- robotics
- pi05
- lerobot
---

# Model Card for pi05

<!-- Provide a quick summary of what the model is/does. -->


**Ο€β‚€.β‚… (Pi05) Policy**

Ο€β‚€.β‚… is a Vision-Language-Action model with open-world generalization, from Physical Intelligence. The LeRobot implementation is adapted from their open source OpenPI repository.

**Model Overview**

Ο€β‚€.β‚… represents a significant evolution from Ο€β‚€, developed by Physical Intelligence to address a big challenge in robotics: open-world generalization. While robots can perform impressive tasks in controlled environments, Ο€β‚€.β‚… is designed to generalize to entirely new environments and situations that were never seen during training.

For more details, see the [Physical Intelligence Ο€β‚€.β‚… blog post](https://www.physicalintelligence.company/blog/pi05).


This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).

---

## How to Get Started with the Model

For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:

### Train from scratch

```bash
lerobot-train \
  --dataset.repo_id=${HF_USER}/<dataset> \
  --policy.type=act \
  --output_dir=outputs/train/<desired_policy_repo_id> \
  --job_name=lerobot_training \
  --policy.device=cuda \
  --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
  --wandb.enable=true
```

_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._

### Evaluate the policy/run inference

```bash
lerobot-record \
  --robot.type=so100_follower \
  --dataset.repo_id=<hf_user>/eval_<dataset> \
  --policy.path=<hf_user>/<desired_policy_repo_id> \
  --episodes=10
```

Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.

---

## Model Details

- **License:** apache-2.0