1prozent_daxweb_capped_50_nosim_maxundersampled
This model is a fine-tuned version of google-bert/bert-base-german-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0234
- Precision: 0.9352
- Recall: 0.9837
- F1: 0.9588
- Accuracy: 0.9945
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 6
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.1202 | 1.0 | 75 | 0.0349 | 0.8460 | 0.9428 | 0.8918 | 0.9879 |
| 0.023 | 2.0 | 150 | 0.0234 | 0.9089 | 0.9782 | 0.9423 | 0.9923 |
| 0.0118 | 3.0 | 225 | 0.0228 | 0.9184 | 0.9809 | 0.9486 | 0.9934 |
| 0.008 | 4.0 | 300 | 0.0213 | 0.9306 | 0.9864 | 0.9577 | 0.9939 |
| 0.0048 | 5.0 | 375 | 0.0248 | 0.9284 | 0.9891 | 0.9578 | 0.9939 |
| 0.0033 | 6.0 | 450 | 0.0234 | 0.9352 | 0.9837 | 0.9588 | 0.9945 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.2.0
- Tokenizers 0.22.0
- Downloads last month
- 11
Model tree for gmanzone/1prozent_daxweb_capped_50_nosim_maxundersampled
Base model
google-bert/bert-base-german-cased