SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B on the data1 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-0.6B
- Maximum Sequence Length: 32768 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- data1
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("gromoboy/qwen3_06b_items_matcher")
# Run inference
queries = [
"\u041e\u0434\u0435\u0436\u0434\u0430 \u0434\u043b\u044f \u043d\u043e\u0432\u043e\u0440\u043e\u0436\u0434\u0435\u043d\u043d\u044b\u0445 \u043c\u0430\u043b\u044c\u0447\u0438\u043a\u043e\u0432 \u0441\u043b\u0438\u043f \u0434\u043b\u044f \u043c\u0430\u043b\u044b\u0448\u0435\u0439 \u043a\u043e\u043c\u0431\u0438\u043d\u0435\u0437\u043e\u043d \u043d\u0430\u0440\u044f\u0434\u043d\u044b\u0439 \u043d\u0430\u0442\u0435\u043b\u044c\u043d\u044b\u0439 \u0434\u043b\u044f \u0444\u043e\u0442\u043e\u0441\u0435\u0441\u0441\u0438\u0438",
]
documents = [
'Одежда для новорожденных мальчиков слипдля малышей комбинезон нарядный нательный для фотосесии',
'Шапка детская для мальчика и снуд',
'ТелескопРефрактор/Детский игровойнабор',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.9531, 0.2704, 0.1847]])
Evaluation
Metrics
Triplet
- Dataset:
dev - Evaluated with
TripletEvaluatorwith these parameters:{ "margin": { "cosine": 0.3, "dot": 0.3, "manhattan": 0.3, "euclidean": 0.3 } }
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9423 |
Training Details
Training Dataset
data1
- Dataset: data1
- Size: 8,914 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.74 tokens
- max: 46 tokens
- min: 36 tokens
- mean: 51.42 tokens
- max: 86 tokens
- min: 6 tokens
- mean: 14.61 tokens
- max: 46 tokens
- Samples:
anchor positive negative Cоуc рыбный Cook&LobsterСоус рыбный, Таиланд 750мл*12 ,стекло (Штук/ящ: [12], Вес в кг: [1.448]Соус устричный GensoCоуc рыбный Cook&LobsterСоус рыбный, Таиланд, 700мл*12 (Штук/ящ: [12], Вес в кг: [1.250]Соус устричный GensoKimchi Чипсы нори TidoriЧипсы нори TIDORI, Корея, Kimchi, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]Original Чипсы нори Tidori - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 25, "similarity_fct": "cos_sim" }
Evaluation Dataset
data1
- Dataset: data1
- Size: 2,288 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 19.04 tokens
- max: 83 tokens
- min: 6 tokens
- mean: 34.31 tokens
- max: 88 tokens
- min: 6 tokens
- mean: 18.38 tokens
- max: 100 tokens
- Samples:
anchor positive negative BBQ Чипсы нори TidoriЧипсы нори TIDORI, Корея, BBQ, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]Kimchi Чипсы нори TidoriOriginal Чипсы нори TidoriЧипсы нори TIDORI, Корея, Original, 15г (5г х 3) * 24 (Штук/ящ: [24], Вес в кг: [0.038]Kimchi Чипсы нори TidoriАвокадо пюре десертное с кокосом, голубикой и сиропом агавы, быстрозамороженное, блок (57 г*4)Авокадо пюре десерт. с КОКОСОМ, ГОЛУБИКОЙ и сиропом агавы, быстрозамороженный 227гр12 блок (57гр4) (Штук/ящ: [12], Вес в кг: [0.235]Авокадо пюре с киви, мятой и сиропом агавы, быстрозамороженное, блок (57 г*4) - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 25, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32learning_rate: 2e-05num_train_epochs: 5warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss | dev_cosine_accuracy |
|---|---|---|---|---|
| -1 | -1 | - | - | 0.5848 |
| 0.3584 | 100 | - | 0.0570 | 0.9030 |
| 0.7168 | 200 | 0.0638 | 0.0504 | 0.9008 |
| 1.0753 | 300 | - | 0.0431 | 0.9331 |
| 1.4337 | 400 | 0.0067 | 0.0385 | 0.9292 |
| 1.7921 | 500 | - | 0.0715 | 0.9191 |
| 2.1505 | 600 | 0.0045 | 0.0664 | 0.9309 |
| 2.5090 | 700 | - | 0.0620 | 0.9414 |
| 2.8674 | 800 | 0.0029 | 0.0532 | 0.9467 |
| 3.2258 | 900 | - | 0.0586 | 0.9432 |
| 3.5842 | 1000 | 0.0041 | 0.0431 | 0.9432 |
| 3.9427 | 1100 | - | 0.0464 | 0.9432 |
| 4.3011 | 1200 | 0.0022 | 0.0611 | 0.9406 |
| 4.6595 | 1300 | - | 0.0646 | 0.9423 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 5.0.0
- Transformers: 4.54.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 98