YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

SigLIP Classification Model - main

Pushed: 2025-12-16T15:38:25.488860Z

Metrics

  • Best (accuracy): 0.6731601731601732 @ step None
  • Final eval: accuracy=0.579004329004329, f1=0.5481997677119629

Train Sampling

  • mode: balanced
  • before: normal=56738 abnormal=30844 total=87582
  • after: normal=30844 abnormal=30844 total=61688

Inference

from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch
processor = AutoImageProcessor.from_pretrained('happy8825/siglip-ecva-main')
model = AutoModelForImageClassification.from_pretrained('happy8825/siglip-ecva-main')
img = Image.open('your_image.png').convert('RGB')
inputs = processor(images=img, return_tensors='pt')
with torch.no_grad():
    logits = model(**inputs).logits
pred = logits.argmax(-1).item()
print(model.config.id2label[pred])
Downloads last month
18
Safetensors
Model size
92.9M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support