Ministral-8B-Instruct-2410- GPTQ
- Model creator: Mistral AI
 - Original model: Ministral-8B-Instruct
 
The model published in this repo was quantized to 4bit using GPTQModel.
Quantization details
All quantization parameters were taken from GPTQ paper.
GPTQ calibration data consisted of 128 random 2048 token segments from the C4 dataset.
The grouping size used for quantization is equal to 128.
Other parameters can be found in quantize_config file: https://huggingface.co/iproskurina/Ministral-8B-Instruct-2410-gptqmodel-4bit/blob/main/quantize_config.json
How to use this GPTQ model from Python code
Install the necessary packages
Requires: GPTQModel v4 or later. Installation details: https://github.com/ModelCloud/GPTQModel?tab=readme-ov-file#install.
pip install -v gptqmodel --no-build-isolation
Run the model with GPTQModel
GPTQModel package: https://github.com/ModelCloud/GPTQModel
from gptqmodel import GPTQModel
model_id = 'iproskurina/Ministral-8B-Instruct-2410'
model = GPTQModel.load(model_id)
result = model.generate("Uncovering deep insights")[0] # tokens
print(model.tokenizer.decode(result)) # string output
- Downloads last month
 - 22
 
Model tree for iproskurina/Ministral-8B-Instruct-2410-gptqmodel-4bit
Base model
mistralai/Ministral-8B-Instruct-2410