cooking_sft_success_new_mem
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the identity and the cooking_sft_success_new_mem datasets. It achieves the following results on the evaluation set:
- Loss: 0.2559
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.3971 | 0.1097 | 50 | 0.4079 |
| 0.3678 | 0.2194 | 100 | 0.3670 |
| 0.3599 | 0.3291 | 150 | 0.3344 |
| 0.3186 | 0.4388 | 200 | 0.3239 |
| 0.2979 | 0.5485 | 250 | 0.2997 |
| 0.2996 | 0.6582 | 300 | 0.2766 |
| 0.2887 | 0.7679 | 350 | 0.2653 |
| 0.2696 | 0.8776 | 400 | 0.2586 |
| 0.2784 | 0.9872 | 450 | 0.2559 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Model tree for izzcw/cooking_sft_success_new_mem
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct