| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						language: [es] | 
					
					
						
						| 
							 | 
						license: mit | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						  - text-classification | 
					
					
						
						| 
							 | 
						  - agriculture | 
					
					
						
						| 
							 | 
						  - climate | 
					
					
						
						| 
							 | 
						  - potato | 
					
					
						
						| 
							 | 
						  - Peru | 
					
					
						
						| 
							 | 
						  - Huancavelica | 
					
					
						
						| 
							 | 
						  - LLaMA | 
					
					
						
						| 
							 | 
						  - environmental-prediction | 
					
					
						
						| 
							 | 
						model-index: | 
					
					
						
						| 
							 | 
						  - name: llama-lateblight-classifier | 
					
					
						
						| 
							 | 
						    results: | 
					
					
						
						| 
							 | 
						      - task: | 
					
					
						
						| 
							 | 
						          type: text-classification | 
					
					
						
						| 
							 | 
						          name: Potato Late Blight Risk Classification | 
					
					
						
						| 
							 | 
						        dataset: | 
					
					
						
						| 
							 | 
						          name: Huancavelica Late Blight Benchmark (Balanced) | 
					
					
						
						| 
							 | 
						          type: tabular | 
					
					
						
						| 
							 | 
						        metrics: | 
					
					
						
						| 
							 | 
						          - name: Accuracy | 
					
					
						
						| 
							 | 
						            type: accuracy | 
					
					
						
						| 
							 | 
						            value: 0.97 | 
					
					
						
						| 
							 | 
						          - name: F1 (macro) | 
					
					
						
						| 
							 | 
						            type: f1 | 
					
					
						
						| 
							 | 
						            value: 0.97 | 
					
					
						
						| 
							 | 
						          - name: Precision | 
					
					
						
						| 
							 | 
						            type: precision | 
					
					
						
						| 
							 | 
						            value: 0.97 | 
					
					
						
						| 
							 | 
						          - name: Recall | 
					
					
						
						| 
							 | 
						            type: recall | 
					
					
						
						| 
							 | 
						            value: 0.97 | 
					
					
						
						| 
							 | 
						pipeline_tag: text-classification | 
					
					
						
						| 
							 | 
						library_name: transformers | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# 🌾 LLaMA Late Blight Classifier (Huancavelica, Peru) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This model is a fine-tuned classifier based on `openlm-research/open_llama_3b`, trained to predict **potato late blight risk levels** (`Bajo`, `Moderado`, `Alto`) in the highlands of Huancavelica, Peru. It uses environmental inputs (temperature, humidity, precipitation) and crop variety metadata to output discrete classifications. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 🤝 Use Case | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						**Direct Use**: Agronomic advisory systems or research tools predicting potato late blight risk from structured prompts or API queries. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						**Not for**: Open-ended generation, conversational use, or regions with different pathogen pressures without retraining. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 🌐 Model Details | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- **Base model**: `openlm-research/open_llama_3b` | 
					
					
						
						| 
							 | 
						- **Architecture**: LLaMA-3B with classification head (`AutoModelForSequenceClassification`) | 
					
					
						
						| 
							 | 
						- **Fine-tuning method**: Full fine-tuning on a balanced, curated dataset (not LoRA) | 
					
					
						
						| 
							 | 
						- **Tokenizer**: Compatible LLaMA tokenizer (`tokenizer.model` included) | 
					
					
						
						| 
							 | 
						- **Language**: Spanish (with structured Spanish prompts) | 
					
					
						
						| 
							 | 
						- **Task**: Hard classification (3-class) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 🎓 Training | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- **Dataset**: 156 training + 24 validation examples (balanced across 3 classes) | 
					
					
						
						| 
							 | 
						- **Labels**: `Bajo`, `Moderado`, `Alto` | 
					
					
						
						| 
							 | 
						- **Format** (JSONL): | 
					
					
						
						| 
							 | 
						  ```json | 
					
					
						
						| 
							 | 
						  { | 
					
					
						
						| 
							 | 
						    "instruction": "Evalúa el riesgo de tizón tardío basado en los datos climáticos y la variedad.", | 
					
					
						
						| 
							 | 
						    "input": "Escenario 1: Temperatura promedio 17.2 °C, Humedad 83%, Precipitación 3.4 mm, Variedad Yungay", | 
					
					
						
						| 
							 | 
						    "output": "Moderado" | 
					
					
						
						| 
							 | 
						  } | 
					
					
						
						| 
							 | 
						  ``` | 
					
					
						
						| 
							 | 
						- **Epochs**: 10 | 
					
					
						
						| 
							 | 
						- **Optimizer**: AdamW (mixed precision) | 
					
					
						
						| 
							 | 
						- **Hardware**: 1x A100 40GB (Colab Pro, single GPU) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 🌿 Evaluation (Balanced Test Set, n = 90) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						| Class     | Precision | Recall | F1    | Support | | 
					
					
						
						| 
							 | 
						|-----------|-----------|--------|-------|---------| | 
					
					
						
						| 
							 | 
						| Bajo      | 1.00      | 0.90   | 0.95  | 30      | | 
					
					
						
						| 
							 | 
						| Moderado | 0.91      | 1.00   | 0.95  | 30      | | 
					
					
						
						| 
							 | 
						| Alto      | 1.00      | 1.00   | 1.00  | 30      | | 
					
					
						
						| 
							 | 
						| **Accuracy** |         |        | **0.97** | 90      | | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 📈 Intended Use and Limitations | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- **Designed for**: Highland regions in Peru (esp. Huancavelica), with expert-labeled ground truth and local pathogen behavior. | 
					
					
						
						| 
							 | 
						- **Limitations**: | 
					
					
						
						| 
							 | 
						  - May generalize poorly to lowland areas or different varieties. | 
					
					
						
						| 
							 | 
						  - Not a substitute for in-field disease monitoring. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 📑 Citation | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						If you use this model, please cite: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						> Jorge Luis Alonso, *Predicting Potato Late Blight in Huancavelica Using LLaMA Models*, 2025 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 🌍 License | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						MIT License (model + training data) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## ⚡ Quick Inference Example | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline | 
					
					
						
						| 
							 | 
						model = AutoModelForSequenceClassification.from_pretrained("jalonso24/llama-lateblight-classifier") | 
					
					
						
						| 
							 | 
						tokenizer = AutoTokenizer.from_pretrained("jalonso24/llama-lateblight-classifier") | 
					
					
						
						| 
							 | 
						clf = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=1) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						prompt = "Escenario: Temperatura 18.1 °C, Humedad 85%, Variedad Amarilis" | 
					
					
						
						| 
							 | 
						clf(prompt) | 
					
					
						
						| 
							 | 
						# ➞ [{'label': 'Alto', 'score': 0.95}] | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 |