jc2375/mem-agent-mlx-fp16
The Model jc2375/mem-agent-mlx-fp16 was converted to MLX format from driaforall/mem-agent using mlx-lm version 0.26.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("jc2375/mem-agent-mlx-fp16")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 21
Model tree for jc2375/mem-agent-mlx-fp16
Base model
driaforall/mem-agent