42

This model is a fine-tuned version of microsoft/resnet-50 on the cifar100 dataset. It achieves the following results on the evaluation set:

  • Loss: -61.2603
  • Accuracy: 0.0145
  • Dt Accuracy: 0.0145
  • Df Accuracy: 0.0132
  • Unlearn Overall Accuracy: 0
  • Unlearn Time: None

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Overall Accuracy Unlearn Overall Accuracy Time
No log 1.0 40 -0.6705 0.8614 0.2576 0.2576 None
No log 2.0 80 -1.1856 0.7334 0.4182 0.4182 None
No log 3.0 120 -3.0241 0.4682 0 0 None
No log 4.0 160 -6.8932 0.2358 0 0 None
No log 5.0 200 -11.5720 0.1004 0 0 None
No log 6.0 240 -16.6897 0.0524 0 0 None
No log 7.0 280 -21.7166 0.035 0 0 None
No log 8.0 320 -26.8608 0.0274 0 0 None
No log 9.0 360 -31.0666 0.0212 0 0 None
No log 10.0 400 -38.7816 0.0186 0 0 None
No log 11.0 440 -41.5065 0.017 0 0 None
No log 12.0 480 -45.3635 0.017 0 0 None
-18.2648 13.0 520 -49.5281 0.016 0 0 None
-18.2648 14.0 560 -53.6067 0.0154 0 0 None
-18.2648 15.0 600 -50.5046 0.0158 0 0 None
-18.2648 16.0 640 -55.5001 0.0148 0 0 None
-18.2648 17.0 680 -55.9571 0.0148 0 0 None
-18.2648 18.0 720 -53.0937 0.015 0 0 None
-18.2648 19.0 760 -54.5232 0.0144 0 0 None
-18.2648 20.0 800 -61.2603 0.0132 0 0 None

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
23.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jialicheng/unlearn_cifar100_resnet-50_neggrad_10_42

Finetuned
(449)
this model

Evaluation results