superb_ks_42

This model is a fine-tuned version of facebook/wav2vec2-large on the superb dataset. It achieves the following results on the evaluation set:

  • Loss: -7.0777
  • Accuracy: 0.6209
  • Test Accuracy: 0.6209
  • Df Accuracy: 0.1352
  • Unlearn Overall Accuracy: 0.7429
  • Unlearn Time: 572.3417

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Overall Accuracy Unlearn Overall Accuracy Time
No log 1.0 32 -2.7512 0.4251 0.6613 0.6613 -1
No log 2.0 64 -7.0777 0.1352 0.7429 0.7429 -1
No log 3.0 96 -9.8062 0.1352 0.7429 0.7429 -1
No log 4.0 128 -12.3922 0.1352 0.7429 0.7429 -1
No log 5.0 160 -14.7819 0.1352 0.7429 0.7429 -1
No log 6.0 192 -16.8573 0.1352 0.7429 0.7429 -1
No log 7.0 224 -18.5870 0.1352 0.7429 0.7429 -1
No log 8.0 256 -19.8639 0.1352 0.7429 0.7429 -1
No log 9.0 288 -20.6518 0.1352 0.7429 0.7429 -1
No log 10.0 320 -20.9192 0.1352 0.7429 0.7429 -1

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jialicheng/unlearn_speech_commands_wav2vec2-large_neggrad_2_42

Finetuned
(37)
this model

Dataset used to train jialicheng/unlearn_speech_commands_wav2vec2-large_neggrad_2_42

Evaluation results