SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("kevinadityai/minilm-ai-faq-embeddings-full")
# Run inference
queries = [
    "Apa nama lain Siloam Kuta?",
]
documents = [
    'Nama lain Siloam Kuta adalah Siloam Hospitals Denpasar atau SHDP',
    'Saat ini memang hanya ada produk tertentu di website. Untuk mengetahui apakah produk yang Anda cari ada di rumah sakit tertentu, Anda dapat langsung menghubungi contact center 1-500-911.',
    'Saat ini, kami menerima uang tunai dan sebagian besar kartu debit/kredit. ATM tersedia di semua Siloam Hospitals.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 384] [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.7573, 0.1031, 0.0649]])

Evaluation

Metrics

Triplet

Metric ai-faq-validation ai-faq-test
cosine_accuracy 1.0 0.9967

Training Details

Training Dataset

Unnamed Dataset

  • Size: 304 training samples
  • Columns: query, answer_positive, and answer_negative
  • Approximate statistics based on the first 304 samples:
    query answer_positive answer_negative
    type string string string
    details
    • min: 4 tokens
    • mean: 12.11 tokens
    • max: 41 tokens
    • min: 8 tokens
    • mean: 32.13 tokens
    • max: 128 tokens
    • min: 8 tokens
    • mean: 32.13 tokens
    • max: 128 tokens
  • Samples:
    query answer_positive answer_negative
    Apa nama lain Siloam Kuta? Nama lain Siloam Kuta adalah Siloam Hospitals Denpasar atau SHDP Saat ini memang hanya ada produk tertentu di website. Untuk mengetahui apakah produk yang Anda cari ada di rumah sakit tertentu, Anda dapat langsung menghubungi contact center 1-500-911.
    Rumah sakit Siloam Hospitals Banjarmasin punya nama lain apa? Nama lain Siloam Hospitals Banjarmasin adalah SHBJ atau Siloam Banjarmasin Tengah Anda dapat melakukan cancel appointment dan melakukan booking ulang di tanggal yang diinginkan, atau dapat menghubungi/mendatangi Rumah Sakit yang ingin dituju.
    Apa itu MRCCC? MRCCC Siloam Hospitals Semanggi adalah kepanjangan dari MRCCC Lokasinya di Jl. Sultan Hasanuddin No.58, Batulo, Kec. Wolio, Kota Bau-Bau, Sulawesi Tenggara 93716
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 30 evaluation samples
  • Columns: query, answer_positive, and answer_negative
  • Approximate statistics based on the first 30 samples:
    query answer_positive answer_negative
    type string string string
    details
    • min: 7 tokens
    • mean: 12.17 tokens
    • max: 20 tokens
    • min: 15 tokens
    • mean: 30.13 tokens
    • max: 78 tokens
    • min: 12 tokens
    • mean: 37.5 tokens
    • max: 128 tokens
  • Samples:
    query answer_positive answer_negative
    Apa nama lain Siloam Kuta? Nama lain Siloam Kuta adalah Siloam Hospitals Denpasar atau SHDP Saat ini memang hanya ada produk tertentu di website. Untuk mengetahui apakah produk yang Anda cari ada di rumah sakit tertentu, Anda dapat langsung menghubungi contact center 1-500-911.
    Rumah sakit Siloam Hospitals Banjarmasin punya nama lain apa? Nama lain Siloam Hospitals Banjarmasin adalah SHBJ atau Siloam Banjarmasin Tengah Anda dapat melakukan cancel appointment dan melakukan booking ulang di tanggal yang diinginkan, atau dapat menghubungi/mendatangi Rumah Sakit yang ingin dituju.
    Apa itu MRCCC? MRCCC Siloam Hospitals Semanggi adalah kepanjangan dari MRCCC Lokasinya di Jl. Sultan Hasanuddin No.58, Batulo, Kec. Wolio, Kota Bau-Bau, Sulawesi Tenggara 93716
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step ai-faq-validation_cosine_accuracy ai-faq-test_cosine_accuracy
-1 -1 1.0 0.9967

Framework Versions

  • Python: 3.12.10
  • Sentence Transformers: 5.1.1
  • Transformers: 4.56.2
  • PyTorch: 2.8.0+cpu
  • Accelerate: 1.10.1
  • Datasets: 4.1.1
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for kevinadityai/minilm-ai-faq-embeddings-full

Evaluation results