SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("kevinadityai/minilm-ai-faq-embeddings-full")
# Run inference
queries = [
"Apa nama lain Siloam Kuta?",
]
documents = [
'Nama lain Siloam Kuta adalah Siloam Hospitals Denpasar atau SHDP',
'Saat ini memang hanya ada produk tertentu di website. Untuk mengetahui apakah produk yang Anda cari ada di rumah sakit tertentu, Anda dapat langsung menghubungi contact center 1-500-911.',
'Saat ini, kami menerima uang tunai dan sebagian besar kartu debit/kredit. ATM tersedia di semua Siloam Hospitals.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 384] [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.7573, 0.1031, 0.0649]])
Evaluation
Metrics
Triplet
- Datasets:
ai-faq-validationandai-faq-test - Evaluated with
TripletEvaluator
| Metric | ai-faq-validation | ai-faq-test |
|---|---|---|
| cosine_accuracy | 1.0 | 0.9967 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 304 training samples
- Columns:
query,answer_positive, andanswer_negative - Approximate statistics based on the first 304 samples:
query answer_positive answer_negative type string string string details - min: 4 tokens
- mean: 12.11 tokens
- max: 41 tokens
- min: 8 tokens
- mean: 32.13 tokens
- max: 128 tokens
- min: 8 tokens
- mean: 32.13 tokens
- max: 128 tokens
- Samples:
query answer_positive answer_negative Apa nama lain Siloam Kuta?Nama lain Siloam Kuta adalah Siloam Hospitals Denpasar atau SHDPSaat ini memang hanya ada produk tertentu di website. Untuk mengetahui apakah produk yang Anda cari ada di rumah sakit tertentu, Anda dapat langsung menghubungi contact center 1-500-911.Rumah sakit Siloam Hospitals Banjarmasin punya nama lain apa?Nama lain Siloam Hospitals Banjarmasin adalah SHBJ atau Siloam Banjarmasin TengahAnda dapat melakukan cancel appointment dan melakukan booking ulang di tanggal yang diinginkan, atau dapat menghubungi/mendatangi Rumah Sakit yang ingin dituju.Apa itu MRCCC?MRCCC Siloam Hospitals Semanggi adalah kepanjangan dari MRCCCLokasinya di Jl. Sultan Hasanuddin No.58, Batulo, Kec. Wolio, Kota Bau-Bau, Sulawesi Tenggara 93716 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
Unnamed Dataset
- Size: 30 evaluation samples
- Columns:
query,answer_positive, andanswer_negative - Approximate statistics based on the first 30 samples:
query answer_positive answer_negative type string string string details - min: 7 tokens
- mean: 12.17 tokens
- max: 20 tokens
- min: 15 tokens
- mean: 30.13 tokens
- max: 78 tokens
- min: 12 tokens
- mean: 37.5 tokens
- max: 128 tokens
- Samples:
query answer_positive answer_negative Apa nama lain Siloam Kuta?Nama lain Siloam Kuta adalah Siloam Hospitals Denpasar atau SHDPSaat ini memang hanya ada produk tertentu di website. Untuk mengetahui apakah produk yang Anda cari ada di rumah sakit tertentu, Anda dapat langsung menghubungi contact center 1-500-911.Rumah sakit Siloam Hospitals Banjarmasin punya nama lain apa?Nama lain Siloam Hospitals Banjarmasin adalah SHBJ atau Siloam Banjarmasin TengahAnda dapat melakukan cancel appointment dan melakukan booking ulang di tanggal yang diinginkan, atau dapat menghubungi/mendatangi Rumah Sakit yang ingin dituju.Apa itu MRCCC?MRCCC Siloam Hospitals Semanggi adalah kepanjangan dari MRCCCLokasinya di Jl. Sultan Hasanuddin No.58, Batulo, Kec. Wolio, Kota Bau-Bau, Sulawesi Tenggara 93716 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | ai-faq-validation_cosine_accuracy | ai-faq-test_cosine_accuracy |
|---|---|---|---|
| -1 | -1 | 1.0 | 0.9967 |
Framework Versions
- Python: 3.12.10
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.8.0+cpu
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Model tree for kevinadityai/minilm-ai-faq-embeddings-full
Evaluation results
- Cosine Accuracy on ai faq validationself-reported1.000
- Cosine Accuracy on ai faq testself-reported0.997