SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-0.6B
- Maximum Sequence Length: 32768 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("kevinadityai/qwen3-ai-faq-embeddings")
# Run inference
queries = [
"Apa itu SHTB?",
]
documents = [
'Siloam Hospitals TB Simatupang adalah kepanjangan dari SHTB',
'Nama lain Siloam Rawalumbu adalah Siloam Hospitals Bekasi Sepanjang Jaya atau SHBS',
'Hasil MCU / Medical Check Up akan tersedia dalam waktu 1 hari setelah seluruh rangkaian pemeriksaan selesai, kecuali pemeriksaan tertentu yang memerlukan waktu pengerjaan yang lebih lama (contoh: papsmear, biopsi, kultur, dsb).',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.7575, 0.1560, 0.0555]])
Evaluation
Metrics
Triplet
- Datasets:
ai-faq-validationandai-faq-test - Evaluated with
TripletEvaluator
| Metric | ai-faq-validation | ai-faq-test |
|---|---|---|
| cosine_accuracy | 0.9667 | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 243 training samples
- Columns:
query,answer_positive, andanswer_negative - Approximate statistics based on the first 243 samples:
query answer_positive answer_negative type string string string details - min: 3 tokens
- mean: 13.65 tokens
- max: 54 tokens
- min: 14 tokens
- mean: 41.42 tokens
- max: 353 tokens
- min: 10 tokens
- mean: 42.43 tokens
- max: 533 tokens
- Samples:
query answer_positive answer_negative Apa nama lain Siloam Kuta?Nama lain Siloam Kuta adalah Siloam Hospitals Denpasar atau SHDPSaat ini memang hanya ada produk tertentu di website. Untuk mengetahui apakah produk yang Anda cari ada di rumah sakit tertentu, Anda dapat langsung menghubungi contact center 1-500-911.Rumah sakit Siloam Hospitals Banjarmasin punya nama lain apa?Nama lain Siloam Hospitals Banjarmasin adalah SHBJ atau Siloam Banjarmasin TengahAnda dapat melakukan cancel appointment dan melakukan booking ulang di tanggal yang diinginkan, atau dapat menghubungi/mendatangi Rumah Sakit yang ingin dituju.Apa itu MRCCC?MRCCC Siloam Hospitals Semanggi adalah kepanjangan dari MRCCCLokasinya di Jl. Sultan Hasanuddin No.58, Batulo, Kec. Wolio, Kota Bau-Bau, Sulawesi Tenggara 93716 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
Unnamed Dataset
- Size: 30 evaluation samples
- Columns:
query,answer_positive, andanswer_negative - Approximate statistics based on the first 30 samples:
query answer_positive answer_negative type string string string details - min: 7 tokens
- mean: 13.07 tokens
- max: 21 tokens
- min: 10 tokens
- mean: 59.33 tokens
- max: 533 tokens
- min: 15 tokens
- mean: 41.9 tokens
- max: 105 tokens
- Samples:
query answer_positive answer_negative Apa itu fitur Self-Check In?Fitur untuk memudahkan pasien melakukan check-in hanya dengan menggunakan aplikasi MySiloam. FItur ini dapat digunakan jika sudah ditanggal booking yang sudah dibuat sebelumnya oleh pasien.Lokasinya di Jl. MT Haryono No.23, Damai, Kecamatan Balikpapan Selatan, Kota Balikpapan, Kalimantan Timur 76114Alamat Siloam Hospitals Purwakarta dimana?Lokasinya di Jl. Raya Bungursari No.1, Cibening, Kec. Bungursari, Kabupaten Purwakarta, Jawa Barat 41181Siloam Hospitals Denpasar adalah kepanjangan dari SHDPAlamat Siloam Hospitals Lubuk Linggau dimana?Lokasinya di Jl. Yos Sudarso No.RT.11, Taba Jemekeh, Kec. Lubuk Linggau Tim. I, Kota Lubuklinggau, Sumatera Selatan 31613Siloam Hospitals Kelapa Dua adalah kepanjangan dari SHKD - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepslearning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | ai-faq-validation_cosine_accuracy | ai-faq-test_cosine_accuracy |
|---|---|---|---|
| -1 | -1 | 0.9667 | 1.0 |
Framework Versions
- Python: 3.12.10
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.8.0+cpu
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Model tree for kevinadityai/qwen3-ai-faq-embeddings
Evaluation results
- Cosine Accuracy on ai faq validationself-reported0.967
- Cosine Accuracy on ai faq testself-reported1.000