FunctionGemma Hermes Tool-Use (3K Fine-tuned)
This model is a fine-tuned version of Google’s FunctionGemma (270M), trained on a curated subset of the Hermes Tool-Use dataset to improve structured function calling.
The goal of this fine-tuning is higher accuracy and reliability when selecting the correct tool and emitting a valid function call in the expected format.
Check out Fine-tuning script: https://www.kaggle.com/code/kingabzpro/finetuning-functiongemma
🚀 What’s Improved
Evaluation was run on a held-out validation set (50 examples):
| Metric | Before FT | After FT |
|---|---|---|
| Tool Selection Accuracy | 88.0% | 98.0% |
| Absolute Gain | – | +10.0% |
This shows the model learns better tool selection and call consistency, even though the base model already performs strongly.
🧠 Supported Output Format
The model emits function calls in FunctionGemma-style tags:
<start_function_call>
call:tool_name{args:<escape>{...}<escape>}
<end_function_call>
This is compatible with downstream tool execution pipelines.
📦 Installation
pip install transformers accelerate sentencepiece
🔧 Usage Example (Function Calling)
from transformers import AutoProcessor, AutoModelForCausalLM
repo_id = "kingabzpro/functiongemma-hermes-3k-ft"
processor = AutoProcessor.from_pretrained(repo_id)
model = AutoModelForCausalLM.from_pretrained(repo_id)
# Tool definition (HF function schema)
tools = [
{
"type": "function",
"function": {
"name": "billboard_global_200",
"description": "Fetch Billboard Global 200 chart information for a specific date.",
"parameters": {
"type": "object",
"properties": {
"date": {
"type": "string",
"description": "Date in YYYY-MM-DD format",
"default": "2020-09-19",
}
},
"required": ["date"],
},
},
}
]
messages = [
{
"role": "developer",
"content": (
"You are a function calling AI model. "
"Each function call must be enclosed in <tool_call> XML tags."
),
},
{
"role": "user",
"content": (
"Which songs were at positions 1, 11, 21, 31, and 41 "
"on the Billboard Global 200 chart, and who sang them?"
),
},
]
inputs = processor.apply_chat_template(
messages,
tools=tools,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
outputs = model.generate(
**inputs,
max_new_tokens=256,
pad_token_id=processor.eos_token_id,
)
gen = processor.decode(
outputs[0][inputs["input_ids"].shape[-1]:],
skip_special_tokens=True,
)
print(gen)
✅ Example Output
<start_function_call>
call:billboard_global_200{args:<escape>{"date": "2006-03-20"}<escape>}
<end_function_call>
🎯 Intended Use
- Tool / function calling research
- Agent systems and planners
- Structured API invocation
- Evaluation of tool-selection accuracy
- Lightweight function-calling demos (CPU / small GPU friendly)
⚠️ Limitations
- Trained on a subset (3K) of Hermes Tool-Use data
- Focused on tool selection, not long-form reasoning
- Not instruction-tuned for general chat beyond tool use
📜 Attribution
- Base model: Google FunctionGemma
- Dataset: Hermes Tool-Use
- Fine-tuning & evaluation: kingabzpro
- Downloads last month
- 32
Model tree for kingabzpro/functiongemma-hermes-3k-ft
Base model
google/functiongemma-270m-it