Add diffusers
#1
by
multimodalart
HF Staff
- opened
- README.md +76 -0
- __init__.py +0 -0
- before_denoise.py +956 -0
- decoders.py +145 -0
- denoise.py +330 -0
- encoders.py +282 -0
- modular_blocks.py +42 -0
- modular_config.json +7 -0
- modular_model_index.json +79 -0
- transformer/__init__.py +0 -0
- transformer/attention.py +326 -0
- transformer/causal_model.py +1402 -0
- transformer/config.json +19 -0
- transformer/diffusion_pytorch_model-00001-of-00003.safetensors +3 -0
- transformer/diffusion_pytorch_model-00002-of-00003.safetensors +3 -0
- transformer/diffusion_pytorch_model-00003-of-00003.safetensors +3 -0
- transformer/diffusion_pytorch_model.safetensors.index.json +1102 -0
- transformer/model.py +1002 -0
README.md
CHANGED
|
@@ -8,6 +8,7 @@ tags:
|
|
| 8 |
- text-to-video
|
| 9 |
- video-to-video
|
| 10 |
- realtime
|
|
|
|
| 11 |
---
|
| 12 |
Krea Realtime 14B is distilled from the [Wan 2.1 14B text-to-video model](https://huggingface.co/Wan-AI/Wan2.1-T2V-14B) using Self-Forcing, a technique for converting regular video diffusion models into autoregressive models. It achieves a text-to-video inference speed of **11fps** using 4 inference steps on a single NVIDIA B200 GPU. For more details on our training methodology and sampling innovations, refer to our [technical blog post](https://www.krea.ai/blog/krea-realtime-14b).
|
| 13 |
|
|
@@ -97,5 +98,80 @@ Krea realtime allows users to generate videos in a streaming fashion with ~1s ti
|
|
| 97 |
</table>
|
| 98 |
</div>
|
| 99 |
|
|
|
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
- text-to-video
|
| 9 |
- video-to-video
|
| 10 |
- realtime
|
| 11 |
+
library_name: diffusers
|
| 12 |
---
|
| 13 |
Krea Realtime 14B is distilled from the [Wan 2.1 14B text-to-video model](https://huggingface.co/Wan-AI/Wan2.1-T2V-14B) using Self-Forcing, a technique for converting regular video diffusion models into autoregressive models. It achieves a text-to-video inference speed of **11fps** using 4 inference steps on a single NVIDIA B200 GPU. For more details on our training methodology and sampling innovations, refer to our [technical blog post](https://www.krea.ai/blog/krea-realtime-14b).
|
| 14 |
|
|
|
|
| 98 |
</table>
|
| 99 |
</div>
|
| 100 |
|
| 101 |
+
# Use it with our inference code
|
| 102 |
|
| 103 |
+
Set up
|
| 104 |
+
```bash
|
| 105 |
+
sudo apt install ffmpeg # install if you haven't already
|
| 106 |
+
git clone https://github.com/krea-ai/realtime-video
|
| 107 |
+
cd realtime-video
|
| 108 |
+
uv sync
|
| 109 |
+
uv pip install flash_attn --no-build-isolation
|
| 110 |
+
huggingface-cli download Wan-AI/Wan2.1-T2V-1.3B --local-dir-use-symlinks False --local-dir wan_models/Wan2.1-T2V-1.3B
|
| 111 |
+
huggingface-cli download krea/krea-realtime-video krea-realtime-video-14b.safetensors --local-dir-use-symlinks False --local-dir checkpoints/krea-realtime-video-14b.safetensors
|
| 112 |
+
```
|
| 113 |
|
| 114 |
+
Run
|
| 115 |
+
```bash
|
| 116 |
+
export MODEL_FOLDER=Wan-AI
|
| 117 |
+
export CUDA_VISIBLE_DEVICES=0 # pick the GPU you want to serve on
|
| 118 |
+
export DO_COMPILE=true
|
| 119 |
+
|
| 120 |
+
uvicorn release_server:app --host 0.0.0.0 --port 8000
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
And use the web app at http://localhost:8000/ in your browser
|
| 124 |
+
(for more advanced use-cases and custom pipeline check out our GitHub repository: https://github.com/krea-ai/realtime-video)
|
| 125 |
+
|
| 126 |
+
# Use it with 🧨 diffusers
|
| 127 |
+
|
| 128 |
+
Krea Realtime 14B can be used with the `diffusers` library utilizing the new Modular Diffusers structure (for now supporting text-to-video, video-to-video coming soon)
|
| 129 |
+
|
| 130 |
+
```bash
|
| 131 |
+
# Install diffusers from main
|
| 132 |
+
pip install git+github.com/huggingface/diffusers.git
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
```py
|
| 136 |
+
import torch
|
| 137 |
+
from collections import deque
|
| 138 |
+
from diffusers.utils import export_to_video
|
| 139 |
+
from diffusers import ModularPipelineBlocks
|
| 140 |
+
from diffusers.modular_pipelines import PipelineState, WanModularPipeline
|
| 141 |
+
|
| 142 |
+
repo_id = "krea/krea-realtime-video"
|
| 143 |
+
blocks = ModularPipelineBlocks.from_pretrained(repo_id, trust_remote_code=True)
|
| 144 |
+
pipe = WanModularPipeline(blocks, repo_id)
|
| 145 |
+
|
| 146 |
+
pipe.load_components(
|
| 147 |
+
trust_remote_code=True,
|
| 148 |
+
device_map="cuda",
|
| 149 |
+
torch_dtype={"default": torch.bfloat16, "vae": torch.float16},
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
num_frames_per_block = 3
|
| 153 |
+
num_blocks = 9
|
| 154 |
+
|
| 155 |
+
frames = []
|
| 156 |
+
state = PipelineState()
|
| 157 |
+
state.set("frame_cache_context", deque(maxlen=pipe.config.frame_cache_len))
|
| 158 |
+
|
| 159 |
+
prompt = ["a cat sitting on a boat"]
|
| 160 |
+
|
| 161 |
+
for block in pipe.transformer.blocks:
|
| 162 |
+
block.self_attn.fuse_projections()
|
| 163 |
+
|
| 164 |
+
for block_idx in range(num_blocks):
|
| 165 |
+
state = pipe(
|
| 166 |
+
state,
|
| 167 |
+
prompt=prompt,
|
| 168 |
+
num_inference_steps=6,
|
| 169 |
+
num_blocks=num_blocks,
|
| 170 |
+
num_frames_per_block=num_frames_per_block,
|
| 171 |
+
block_idx=block_idx,
|
| 172 |
+
generator=torch.Generator("cuda").manual_seed(42),
|
| 173 |
+
)
|
| 174 |
+
frames.extend(state.values["videos"][0])
|
| 175 |
+
|
| 176 |
+
export_to_video(frames, "output.mp4", fps=16)
|
| 177 |
+
```
|
__init__.py
ADDED
|
File without changes
|
before_denoise.py
ADDED
|
@@ -0,0 +1,956 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from typing import List, Optional, Union, Dict
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
|
| 20 |
+
from diffusers import AutoencoderKLWan
|
| 21 |
+
from diffusers.schedulers import UniPCMultistepScheduler
|
| 22 |
+
from diffusers.utils import logging
|
| 23 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 24 |
+
from diffusers.modular_pipelines import (
|
| 25 |
+
ModularPipeline,
|
| 26 |
+
ModularPipelineBlocks,
|
| 27 |
+
SequentialPipelineBlocks,
|
| 28 |
+
PipelineState,
|
| 29 |
+
)
|
| 30 |
+
from diffusers.modular_pipelines.modular_pipeline_utils import (
|
| 31 |
+
ComponentSpec,
|
| 32 |
+
ConfigSpec,
|
| 33 |
+
InputParam,
|
| 34 |
+
OutputParam,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 41 |
+
def retrieve_timesteps(
|
| 42 |
+
scheduler,
|
| 43 |
+
num_inference_steps: Optional[int] = None,
|
| 44 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 45 |
+
timesteps: Optional[List[int]] = None,
|
| 46 |
+
sigmas: Optional[List[float]] = None,
|
| 47 |
+
**kwargs,
|
| 48 |
+
):
|
| 49 |
+
r"""
|
| 50 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 51 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
scheduler (`SchedulerMixin`):
|
| 55 |
+
The scheduler to get timesteps from.
|
| 56 |
+
num_inference_steps (`int`):
|
| 57 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 58 |
+
must be `None`.
|
| 59 |
+
device (`str` or `torch.device`, *optional*):
|
| 60 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 61 |
+
timesteps (`List[int]`, *optional*):
|
| 62 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 63 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 64 |
+
sigmas (`List[float]`, *optional*):
|
| 65 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 66 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 70 |
+
second element is the number of inference steps.
|
| 71 |
+
"""
|
| 72 |
+
if timesteps is not None and sigmas is not None:
|
| 73 |
+
raise ValueError(
|
| 74 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
| 75 |
+
)
|
| 76 |
+
if timesteps is not None:
|
| 77 |
+
accepts_timesteps = "timesteps" in set(
|
| 78 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 79 |
+
)
|
| 80 |
+
if not accepts_timesteps:
|
| 81 |
+
raise ValueError(
|
| 82 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 83 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 84 |
+
)
|
| 85 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 86 |
+
timesteps = scheduler.timesteps
|
| 87 |
+
num_inference_steps = len(timesteps)
|
| 88 |
+
elif sigmas is not None:
|
| 89 |
+
accept_sigmas = "sigmas" in set(
|
| 90 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 91 |
+
)
|
| 92 |
+
if not accept_sigmas:
|
| 93 |
+
raise ValueError(
|
| 94 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 95 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 96 |
+
)
|
| 97 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 98 |
+
timesteps = scheduler.timesteps
|
| 99 |
+
num_inference_steps = len(timesteps)
|
| 100 |
+
else:
|
| 101 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 102 |
+
timesteps = scheduler.timesteps
|
| 103 |
+
return timesteps, num_inference_steps
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def retrieve_latents(
|
| 107 |
+
encoder_output: torch.Tensor,
|
| 108 |
+
generator: Optional[torch.Generator] = None,
|
| 109 |
+
sample_mode: str = "sample",
|
| 110 |
+
):
|
| 111 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 112 |
+
return encoder_output.latent_dist.sample(generator)
|
| 113 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 114 |
+
return encoder_output.latent_dist.mode()
|
| 115 |
+
elif hasattr(encoder_output, "latents"):
|
| 116 |
+
return encoder_output.latents
|
| 117 |
+
else:
|
| 118 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def _initialize_kv_cache(
|
| 122 |
+
components: ModularPipeline,
|
| 123 |
+
kv_cache_existing: Optional[List[Dict]],
|
| 124 |
+
batch_size: int,
|
| 125 |
+
dtype: torch.dtype,
|
| 126 |
+
device: torch.device,
|
| 127 |
+
local_attn_size: int,
|
| 128 |
+
frame_seq_length: int,
|
| 129 |
+
):
|
| 130 |
+
"""
|
| 131 |
+
Initialize a Per-GPU KV cache for the Wan model.
|
| 132 |
+
Mirrors causal_inference.py:279-313
|
| 133 |
+
"""
|
| 134 |
+
kv_cache = []
|
| 135 |
+
|
| 136 |
+
# Calculate KV cache size
|
| 137 |
+
if local_attn_size != -1:
|
| 138 |
+
# Use the local attention size to compute the KV cache size
|
| 139 |
+
kv_cache_size = local_attn_size * frame_seq_length
|
| 140 |
+
else:
|
| 141 |
+
# Use the default KV cache size
|
| 142 |
+
kv_cache_size = 32760
|
| 143 |
+
|
| 144 |
+
# Get transformer config
|
| 145 |
+
num_transformer_blocks = len(components.transformer.blocks)
|
| 146 |
+
num_heads = components.transformer.config.num_heads
|
| 147 |
+
dim = components.transformer.config.dim
|
| 148 |
+
k_shape = [batch_size, kv_cache_size, num_heads, dim // num_heads]
|
| 149 |
+
v_shape = [batch_size, kv_cache_size, num_heads, dim // num_heads]
|
| 150 |
+
|
| 151 |
+
# Check if we can reuse existing cache
|
| 152 |
+
if (
|
| 153 |
+
kv_cache_existing
|
| 154 |
+
and len(kv_cache_existing) > 0
|
| 155 |
+
and list(kv_cache_existing[0]["k"].shape) == k_shape
|
| 156 |
+
and list(kv_cache_existing[0]["v"].shape) == v_shape
|
| 157 |
+
):
|
| 158 |
+
for i in range(num_transformer_blocks):
|
| 159 |
+
kv_cache_existing[i]["k"].zero_()
|
| 160 |
+
kv_cache_existing[i]["v"].zero_()
|
| 161 |
+
kv_cache_existing[i]["global_end_index"] = 0
|
| 162 |
+
kv_cache_existing[i]["local_end_index"] = 0
|
| 163 |
+
return kv_cache_existing
|
| 164 |
+
else:
|
| 165 |
+
# Create new cache
|
| 166 |
+
for _ in range(num_transformer_blocks):
|
| 167 |
+
kv_cache.append(
|
| 168 |
+
{
|
| 169 |
+
"k": torch.zeros(k_shape, dtype=dtype, device=device).contiguous(),
|
| 170 |
+
"v": torch.zeros(v_shape, dtype=dtype, device=device).contiguous(),
|
| 171 |
+
"global_end_index": 0,
|
| 172 |
+
"local_end_index": 0,
|
| 173 |
+
}
|
| 174 |
+
)
|
| 175 |
+
return kv_cache
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def _initialize_crossattn_cache(
|
| 179 |
+
components: ModularPipeline,
|
| 180 |
+
crossattn_cache_existing: Optional[List[Dict]],
|
| 181 |
+
batch_size: int,
|
| 182 |
+
dtype: torch.dtype,
|
| 183 |
+
device: torch.device,
|
| 184 |
+
):
|
| 185 |
+
"""
|
| 186 |
+
Initialize a Per-GPU cross-attention cache for the Wan model.
|
| 187 |
+
Mirrors causal_inference.py:315-338
|
| 188 |
+
"""
|
| 189 |
+
crossattn_cache = []
|
| 190 |
+
|
| 191 |
+
# Get transformer config
|
| 192 |
+
num_transformer_blocks = len(components.transformer.blocks)
|
| 193 |
+
num_heads = components.transformer.config.num_heads
|
| 194 |
+
dim = components.transformer.config.dim
|
| 195 |
+
k_shape = [batch_size, 512, num_heads, dim // num_heads]
|
| 196 |
+
v_shape = [batch_size, 512, num_heads, dim // num_heads]
|
| 197 |
+
|
| 198 |
+
# Check if we can reuse existing cache
|
| 199 |
+
if (
|
| 200 |
+
crossattn_cache_existing
|
| 201 |
+
and len(crossattn_cache_existing) > 0
|
| 202 |
+
and list(crossattn_cache_existing[0]["k"].shape) == k_shape
|
| 203 |
+
and list(crossattn_cache_existing[0]["v"].shape) == v_shape
|
| 204 |
+
):
|
| 205 |
+
for i in range(num_transformer_blocks):
|
| 206 |
+
crossattn_cache_existing[i]["k"].zero_()
|
| 207 |
+
crossattn_cache_existing[i]["v"].zero_()
|
| 208 |
+
crossattn_cache_existing[i]["is_init"] = False
|
| 209 |
+
return crossattn_cache_existing
|
| 210 |
+
else:
|
| 211 |
+
# Create new cache
|
| 212 |
+
for _ in range(num_transformer_blocks):
|
| 213 |
+
crossattn_cache.append(
|
| 214 |
+
{
|
| 215 |
+
"k": torch.zeros(k_shape, dtype=dtype, device=device).contiguous(),
|
| 216 |
+
"v": torch.zeros(v_shape, dtype=dtype, device=device).contiguous(),
|
| 217 |
+
"is_init": False,
|
| 218 |
+
}
|
| 219 |
+
)
|
| 220 |
+
return crossattn_cache
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
class WanInputStep(ModularPipelineBlocks):
|
| 224 |
+
model_name = "WanRT"
|
| 225 |
+
|
| 226 |
+
@property
|
| 227 |
+
def description(self) -> str:
|
| 228 |
+
return (
|
| 229 |
+
"Input processing step that:\n"
|
| 230 |
+
" 1. Determines `batch_size` and `dtype` based on `prompt_embeds`\n"
|
| 231 |
+
" 2. Adjusts input tensor shapes based on `batch_size` (number of prompts) and `num_videos_per_prompt`\n\n"
|
| 232 |
+
"All input tensors are expected to have either batch_size=1 or match the batch_size\n"
|
| 233 |
+
"of prompt_embeds. The tensors will be duplicated across the batch dimension to\n"
|
| 234 |
+
"have a final batch_size of batch_size * num_videos_per_prompt."
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
@property
|
| 238 |
+
def inputs(self) -> List[InputParam]:
|
| 239 |
+
return [
|
| 240 |
+
InputParam("num_videos_per_prompt", default=1),
|
| 241 |
+
InputParam(
|
| 242 |
+
"prompt_embeds",
|
| 243 |
+
required=True,
|
| 244 |
+
type_hint=torch.Tensor,
|
| 245 |
+
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
|
| 246 |
+
),
|
| 247 |
+
InputParam(
|
| 248 |
+
"negative_prompt_embeds",
|
| 249 |
+
type_hint=torch.Tensor,
|
| 250 |
+
description="Pre-generated negative text embeddings. Can be generated from text_encoder step.",
|
| 251 |
+
),
|
| 252 |
+
]
|
| 253 |
+
|
| 254 |
+
@property
|
| 255 |
+
def intermediate_outputs(self) -> List[str]:
|
| 256 |
+
return [
|
| 257 |
+
OutputParam(
|
| 258 |
+
"batch_size",
|
| 259 |
+
type_hint=int,
|
| 260 |
+
description="Number of prompts, the final batch size of model inputs should be batch_size * num_videos_per_prompt",
|
| 261 |
+
),
|
| 262 |
+
OutputParam(
|
| 263 |
+
"dtype",
|
| 264 |
+
type_hint=torch.dtype,
|
| 265 |
+
description="Data type of model tensor inputs (determined by `prompt_embeds`)",
|
| 266 |
+
),
|
| 267 |
+
OutputParam(
|
| 268 |
+
"prompt_embeds",
|
| 269 |
+
type_hint=torch.Tensor,
|
| 270 |
+
kwargs_type="denoiser_input_fields", # already in intermedites state but declare here again for denoiser_input_fields
|
| 271 |
+
description="text embeddings used to guide the image generation",
|
| 272 |
+
),
|
| 273 |
+
OutputParam(
|
| 274 |
+
"negative_prompt_embeds",
|
| 275 |
+
type_hint=torch.Tensor,
|
| 276 |
+
kwargs_type="denoiser_input_fields", # already in intermedites state but declare here again for denoiser_input_fields
|
| 277 |
+
description="negative text embeddings used to guide the image generation",
|
| 278 |
+
),
|
| 279 |
+
]
|
| 280 |
+
|
| 281 |
+
def check_inputs(self, components, block_state):
|
| 282 |
+
if (
|
| 283 |
+
block_state.prompt_embeds is not None
|
| 284 |
+
and block_state.negative_prompt_embeds is not None
|
| 285 |
+
):
|
| 286 |
+
if (
|
| 287 |
+
block_state.prompt_embeds.shape
|
| 288 |
+
!= block_state.negative_prompt_embeds.shape
|
| 289 |
+
):
|
| 290 |
+
raise ValueError(
|
| 291 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 292 |
+
f" got: `prompt_embeds` {block_state.prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 293 |
+
f" {block_state.negative_prompt_embeds.shape}."
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
@torch.no_grad()
|
| 297 |
+
def __call__(
|
| 298 |
+
self, components: ModularPipeline, state: PipelineState
|
| 299 |
+
) -> PipelineState:
|
| 300 |
+
block_state = self.get_block_state(state)
|
| 301 |
+
self.check_inputs(components, block_state)
|
| 302 |
+
|
| 303 |
+
block_state.batch_size = block_state.prompt_embeds.shape[0]
|
| 304 |
+
block_state.dtype = block_state.prompt_embeds.dtype
|
| 305 |
+
|
| 306 |
+
_, seq_len, _ = block_state.prompt_embeds.shape
|
| 307 |
+
block_state.prompt_embeds = block_state.prompt_embeds.repeat(
|
| 308 |
+
1, block_state.num_videos_per_prompt, 1
|
| 309 |
+
)
|
| 310 |
+
block_state.prompt_embeds = block_state.prompt_embeds.view(
|
| 311 |
+
block_state.batch_size * block_state.num_videos_per_prompt, seq_len, -1
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
if block_state.negative_prompt_embeds is not None:
|
| 315 |
+
_, seq_len, _ = block_state.negative_prompt_embeds.shape
|
| 316 |
+
block_state.negative_prompt_embeds = (
|
| 317 |
+
block_state.negative_prompt_embeds.repeat(
|
| 318 |
+
1, block_state.num_videos_per_prompt, 1
|
| 319 |
+
)
|
| 320 |
+
)
|
| 321 |
+
block_state.negative_prompt_embeds = (
|
| 322 |
+
block_state.negative_prompt_embeds.view(
|
| 323 |
+
block_state.batch_size * block_state.num_videos_per_prompt,
|
| 324 |
+
seq_len,
|
| 325 |
+
-1,
|
| 326 |
+
)
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
self.set_block_state(state, block_state)
|
| 330 |
+
|
| 331 |
+
return components, state
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
class WanRTStreamingSetTimestepsStep(ModularPipelineBlocks):
|
| 335 |
+
model_name = "WanRT"
|
| 336 |
+
|
| 337 |
+
@property
|
| 338 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 339 |
+
return [
|
| 340 |
+
ComponentSpec("scheduler", UniPCMultistepScheduler),
|
| 341 |
+
]
|
| 342 |
+
|
| 343 |
+
@property
|
| 344 |
+
def description(self) -> str:
|
| 345 |
+
return "Step that sets the scheduler's timesteps for inference"
|
| 346 |
+
|
| 347 |
+
@property
|
| 348 |
+
def inputs(self) -> List[InputParam]:
|
| 349 |
+
return [
|
| 350 |
+
InputParam("num_inference_steps", default=4),
|
| 351 |
+
InputParam("timesteps"),
|
| 352 |
+
InputParam("sigmas"),
|
| 353 |
+
]
|
| 354 |
+
|
| 355 |
+
@property
|
| 356 |
+
def intermediate_outputs(self) -> List[OutputParam]:
|
| 357 |
+
return [
|
| 358 |
+
OutputParam(
|
| 359 |
+
"timesteps",
|
| 360 |
+
type_hint=torch.Tensor,
|
| 361 |
+
description="The timesteps to use for inference",
|
| 362 |
+
),
|
| 363 |
+
OutputParam(
|
| 364 |
+
"all_timesteps",
|
| 365 |
+
type_hint=torch.Tensor,
|
| 366 |
+
description="The timesteps to use for inference",
|
| 367 |
+
),
|
| 368 |
+
OutputParam(
|
| 369 |
+
"num_inference_steps",
|
| 370 |
+
type_hint=int,
|
| 371 |
+
description="The number of denoising steps to perform at inference time",
|
| 372 |
+
),
|
| 373 |
+
]
|
| 374 |
+
|
| 375 |
+
@torch.no_grad()
|
| 376 |
+
def __call__(
|
| 377 |
+
self, components: ModularPipeline, state: PipelineState
|
| 378 |
+
) -> PipelineState:
|
| 379 |
+
block_state = self.get_block_state(state)
|
| 380 |
+
block_state.device = components._execution_device
|
| 381 |
+
|
| 382 |
+
shift = 5.0
|
| 383 |
+
sigmas = torch.linspace(1.0, 0.0, 1001)[:-1]
|
| 384 |
+
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
|
| 385 |
+
|
| 386 |
+
timesteps = sigmas.to(components.transformer.device) * 1000.0
|
| 387 |
+
zero_padded_timesteps = torch.cat(
|
| 388 |
+
[
|
| 389 |
+
timesteps,
|
| 390 |
+
torch.tensor([0], device=components.transformer.device),
|
| 391 |
+
]
|
| 392 |
+
)
|
| 393 |
+
denoising_steps = torch.linspace(
|
| 394 |
+
1000, 0, block_state.num_inference_steps, dtype=torch.float32
|
| 395 |
+
).to(torch.long)
|
| 396 |
+
|
| 397 |
+
block_state.timesteps = zero_padded_timesteps[1000 - denoising_steps]
|
| 398 |
+
block_state.all_timesteps = timesteps
|
| 399 |
+
block_state.sigmas = sigmas
|
| 400 |
+
|
| 401 |
+
self.set_block_state(state, block_state)
|
| 402 |
+
|
| 403 |
+
return components, state
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
class WanRTStreamingPrepareLatentsStep(ModularPipelineBlocks):
|
| 407 |
+
model_name = "WanRT"
|
| 408 |
+
|
| 409 |
+
@property
|
| 410 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 411 |
+
return [
|
| 412 |
+
ComponentSpec("vae", AutoencoderKLWan),
|
| 413 |
+
]
|
| 414 |
+
|
| 415 |
+
@property
|
| 416 |
+
def expected_configs(self) -> List[ConfigSpec]:
|
| 417 |
+
return [ConfigSpec("num_frames_per_block", 3)]
|
| 418 |
+
|
| 419 |
+
@property
|
| 420 |
+
def description(self) -> str:
|
| 421 |
+
return "Prepare latents step that prepares the latents for the text-to-video generation process"
|
| 422 |
+
|
| 423 |
+
@property
|
| 424 |
+
def inputs(self) -> List[InputParam]:
|
| 425 |
+
return [
|
| 426 |
+
InputParam("height", type_hint=int),
|
| 427 |
+
InputParam("width", type_hint=int),
|
| 428 |
+
InputParam("num_blocks", type_hint=int),
|
| 429 |
+
InputParam("num_frames_per_block", type_hint=int),
|
| 430 |
+
InputParam("latents", type_hint=Optional[torch.Tensor]),
|
| 431 |
+
InputParam("init_latents", type_hint=Optional[torch.Tensor]),
|
| 432 |
+
InputParam("final_latents", type_hint=Optional[torch.Tensor]),
|
| 433 |
+
InputParam("num_videos_per_prompt", type_hint=int, default=1),
|
| 434 |
+
InputParam("generator"),
|
| 435 |
+
InputParam(
|
| 436 |
+
"dtype",
|
| 437 |
+
type_hint=torch.dtype,
|
| 438 |
+
description="The dtype of the model inputs",
|
| 439 |
+
),
|
| 440 |
+
]
|
| 441 |
+
|
| 442 |
+
@property
|
| 443 |
+
def intermediate_outputs(self) -> List[OutputParam]:
|
| 444 |
+
return [
|
| 445 |
+
OutputParam(
|
| 446 |
+
"latents",
|
| 447 |
+
type_hint=torch.Tensor,
|
| 448 |
+
description="The initial latents to use for the denoising process",
|
| 449 |
+
),
|
| 450 |
+
OutputParam(
|
| 451 |
+
"init_latents",
|
| 452 |
+
type_hint=torch.Tensor,
|
| 453 |
+
description="The initial latents to use for the denoising process",
|
| 454 |
+
),
|
| 455 |
+
OutputParam(
|
| 456 |
+
"final_latents",
|
| 457 |
+
type_hint=torch.Tensor,
|
| 458 |
+
),
|
| 459 |
+
]
|
| 460 |
+
|
| 461 |
+
@staticmethod
|
| 462 |
+
def check_inputs(components, block_state):
|
| 463 |
+
if (
|
| 464 |
+
block_state.height is not None
|
| 465 |
+
and block_state.height % components.vae_scale_factor_spatial != 0
|
| 466 |
+
) or (
|
| 467 |
+
block_state.width is not None
|
| 468 |
+
and block_state.width % components.vae_scale_factor_spatial != 0
|
| 469 |
+
):
|
| 470 |
+
raise ValueError(
|
| 471 |
+
f"`height` and `width` have to be divisible by {components.vae_scale_factor_spatial} but are {block_state.height} and {block_state.width}."
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
@staticmethod
|
| 475 |
+
def prepare_latents(
|
| 476 |
+
components,
|
| 477 |
+
batch_size: int,
|
| 478 |
+
num_channels_latents: int = 16,
|
| 479 |
+
height: int = 352,
|
| 480 |
+
width: int = 640,
|
| 481 |
+
num_blocks: int = 9,
|
| 482 |
+
num_frames_per_block: int = 3,
|
| 483 |
+
dtype: Optional[torch.dtype] = None,
|
| 484 |
+
device: Optional[torch.device] = None,
|
| 485 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 486 |
+
latents: Optional[torch.Tensor] = None,
|
| 487 |
+
) -> torch.Tensor:
|
| 488 |
+
if latents is not None:
|
| 489 |
+
return latents.to(device=device, dtype=dtype)
|
| 490 |
+
|
| 491 |
+
num_latent_frames = num_blocks * num_frames_per_block
|
| 492 |
+
shape = (
|
| 493 |
+
batch_size,
|
| 494 |
+
num_channels_latents,
|
| 495 |
+
num_latent_frames,
|
| 496 |
+
int(height) // components.vae_scale_factor_spatial,
|
| 497 |
+
int(width) // components.vae_scale_factor_spatial,
|
| 498 |
+
)
|
| 499 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 500 |
+
raise ValueError(
|
| 501 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 502 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
latents = randn_tensor(
|
| 506 |
+
shape,
|
| 507 |
+
generator=generator,
|
| 508 |
+
device=components.transformer.device,
|
| 509 |
+
dtype=dtype,
|
| 510 |
+
)
|
| 511 |
+
return latents
|
| 512 |
+
|
| 513 |
+
@torch.no_grad()
|
| 514 |
+
def __call__(
|
| 515 |
+
self, components: ModularPipeline, state: PipelineState
|
| 516 |
+
) -> PipelineState:
|
| 517 |
+
block_state = self.get_block_state(state)
|
| 518 |
+
|
| 519 |
+
block_state.height = block_state.height or components.default_height
|
| 520 |
+
block_state.width = block_state.width or components.default_width
|
| 521 |
+
block_state.device = components._execution_device
|
| 522 |
+
block_state.num_channels_latents = components.num_channels_latents
|
| 523 |
+
|
| 524 |
+
self.check_inputs(components, block_state)
|
| 525 |
+
|
| 526 |
+
block_state.init_latents = self.prepare_latents(
|
| 527 |
+
components,
|
| 528 |
+
1,
|
| 529 |
+
block_state.num_channels_latents,
|
| 530 |
+
block_state.height,
|
| 531 |
+
block_state.width,
|
| 532 |
+
block_state.num_blocks,
|
| 533 |
+
components.config.num_frames_per_block,
|
| 534 |
+
components.transformer.dtype,
|
| 535 |
+
block_state.device,
|
| 536 |
+
block_state.generator,
|
| 537 |
+
block_state.init_latents,
|
| 538 |
+
)
|
| 539 |
+
if block_state.final_latents is None:
|
| 540 |
+
block_state.final_latents = torch.zeros_like(
|
| 541 |
+
block_state.init_latents, device=components.transformer.device
|
| 542 |
+
)
|
| 543 |
+
self.set_block_state(state, block_state)
|
| 544 |
+
|
| 545 |
+
return components, state
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
class WanRTStreamingExtractBlockLatentsStep(ModularPipelineBlocks):
|
| 549 |
+
"""
|
| 550 |
+
Extracts a single block of latents from the full video buffer for streaming generation.
|
| 551 |
+
|
| 552 |
+
This block simply slices the final_latents buffer to get the current block's latents.
|
| 553 |
+
The final_latents buffer should be created beforehand using WanRTStreamingPrepareAllLatents.
|
| 554 |
+
"""
|
| 555 |
+
|
| 556 |
+
model_name = "WanRT"
|
| 557 |
+
|
| 558 |
+
@property
|
| 559 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 560 |
+
return []
|
| 561 |
+
|
| 562 |
+
@property
|
| 563 |
+
def description(self) -> str:
|
| 564 |
+
return (
|
| 565 |
+
"Extracts a single block from the full latent buffer for streaming generation. "
|
| 566 |
+
"Slices final_latents based on block_idx to get current block's latents."
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
@property
|
| 570 |
+
def inputs(self) -> List[InputParam]:
|
| 571 |
+
return [
|
| 572 |
+
InputParam(
|
| 573 |
+
"final_latents",
|
| 574 |
+
required=True,
|
| 575 |
+
type_hint=torch.Tensor,
|
| 576 |
+
description="Full latent buffer [B, C, total_frames, H, W]",
|
| 577 |
+
),
|
| 578 |
+
InputParam(
|
| 579 |
+
"init_latents",
|
| 580 |
+
required=True,
|
| 581 |
+
type_hint=torch.Tensor,
|
| 582 |
+
description="Full latent buffer [B, C, total_frames, H, W]",
|
| 583 |
+
),
|
| 584 |
+
InputParam(
|
| 585 |
+
"latents",
|
| 586 |
+
type_hint=torch.Tensor,
|
| 587 |
+
description="Full latent buffer [B, C, total_frames, H, W]",
|
| 588 |
+
),
|
| 589 |
+
InputParam(
|
| 590 |
+
"block_idx",
|
| 591 |
+
required=True,
|
| 592 |
+
type_hint=int,
|
| 593 |
+
default=0,
|
| 594 |
+
description="Current block index to process",
|
| 595 |
+
),
|
| 596 |
+
InputParam(
|
| 597 |
+
"num_frames_per_block",
|
| 598 |
+
required=True,
|
| 599 |
+
type_hint=int,
|
| 600 |
+
default=3,
|
| 601 |
+
description="Number of frames per block",
|
| 602 |
+
),
|
| 603 |
+
]
|
| 604 |
+
|
| 605 |
+
@property
|
| 606 |
+
def intermediate_outputs(self) -> List[OutputParam]:
|
| 607 |
+
return [
|
| 608 |
+
OutputParam(
|
| 609 |
+
"latents",
|
| 610 |
+
type_hint=torch.Tensor,
|
| 611 |
+
description="Latents for current block [B, C, num_frames_per_block, H, W]",
|
| 612 |
+
),
|
| 613 |
+
OutputParam(
|
| 614 |
+
"current_start_frame",
|
| 615 |
+
type_hint=int,
|
| 616 |
+
description="Starting frame index for current block",
|
| 617 |
+
),
|
| 618 |
+
]
|
| 619 |
+
|
| 620 |
+
@torch.no_grad()
|
| 621 |
+
def __call__(
|
| 622 |
+
self, components: ModularPipeline, state: PipelineState
|
| 623 |
+
) -> PipelineState:
|
| 624 |
+
block_state = self.get_block_state(state)
|
| 625 |
+
|
| 626 |
+
num_frames_per_block = block_state.num_frames_per_block
|
| 627 |
+
block_idx = block_state.block_idx
|
| 628 |
+
|
| 629 |
+
# Calculate frame range for current block
|
| 630 |
+
start_frame = block_idx * num_frames_per_block
|
| 631 |
+
end_frame = start_frame + num_frames_per_block
|
| 632 |
+
|
| 633 |
+
# Extract single block from full latent buffer
|
| 634 |
+
# final_latents shape: [B, C, total_frames, H, W]
|
| 635 |
+
# Extract frames along the time dimension (dim=2)
|
| 636 |
+
block_state.latents = block_state.init_latents[
|
| 637 |
+
:, :, start_frame:end_frame, :, :
|
| 638 |
+
]
|
| 639 |
+
block_state.current_start_frame = start_frame
|
| 640 |
+
|
| 641 |
+
self.set_block_state(state, block_state)
|
| 642 |
+
return components, state
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
class WanRTStreamingSetupKVCache(ModularPipelineBlocks):
|
| 646 |
+
"""
|
| 647 |
+
Initializes KV cache and cross-attention cache for streaming generation.
|
| 648 |
+
|
| 649 |
+
This block sets up the persistent caches used across all blocks in streaming
|
| 650 |
+
generation. Mirrors the cache initialization logic from causal_inference.py.
|
| 651 |
+
Should be called once at the start of streaming generation.
|
| 652 |
+
"""
|
| 653 |
+
|
| 654 |
+
model_name = "WanRT"
|
| 655 |
+
|
| 656 |
+
@property
|
| 657 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 658 |
+
return [
|
| 659 |
+
ComponentSpec("transformer", torch.nn.Module),
|
| 660 |
+
]
|
| 661 |
+
|
| 662 |
+
@property
|
| 663 |
+
def expected_configs(self) -> List[ConfigSpec]:
|
| 664 |
+
return [
|
| 665 |
+
ConfigSpec("kv_cache_num_frames", 3),
|
| 666 |
+
ConfigSpec("num_frames_per_block", 3),
|
| 667 |
+
ConfigSpec("frame_seq_length", 1560),
|
| 668 |
+
ConfigSpec("frame_cache_len", 9),
|
| 669 |
+
]
|
| 670 |
+
|
| 671 |
+
@property
|
| 672 |
+
def description(self) -> str:
|
| 673 |
+
return (
|
| 674 |
+
"Initializes KV cache and cross-attention cache for streaming generation. "
|
| 675 |
+
"Creates persistent caches that will be reused across all blocks."
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
@property
|
| 679 |
+
def inputs(self) -> List[InputParam]:
|
| 680 |
+
return [
|
| 681 |
+
InputParam(
|
| 682 |
+
"kv_cache",
|
| 683 |
+
required=False,
|
| 684 |
+
type_hint=Optional[List[Dict]],
|
| 685 |
+
description="Existing KV cache. If provided and shape matches, will be zeroed instead of recreated.",
|
| 686 |
+
),
|
| 687 |
+
InputParam(
|
| 688 |
+
"crossattn_cache",
|
| 689 |
+
required=False,
|
| 690 |
+
type_hint=Optional[List[Dict]],
|
| 691 |
+
description="Existing cross-attention cache. If provided and shape matches, will be zeroed.",
|
| 692 |
+
),
|
| 693 |
+
InputParam(
|
| 694 |
+
"local_attn_size",
|
| 695 |
+
required=False,
|
| 696 |
+
type_hint=int,
|
| 697 |
+
default=-1,
|
| 698 |
+
description="Local attention size for computing KV cache size. -1 uses default (32760).",
|
| 699 |
+
),
|
| 700 |
+
InputParam(
|
| 701 |
+
"dtype",
|
| 702 |
+
required=False,
|
| 703 |
+
type_hint=torch.dtype,
|
| 704 |
+
description="Data type for caches (defaults to bfloat16)",
|
| 705 |
+
),
|
| 706 |
+
InputParam(
|
| 707 |
+
"update_prompt_embeds",
|
| 708 |
+
required=False,
|
| 709 |
+
description="Flag to reinitialize prompt embeds if they are updated.",
|
| 710 |
+
default=False,
|
| 711 |
+
),
|
| 712 |
+
]
|
| 713 |
+
|
| 714 |
+
@property
|
| 715 |
+
def outputs(self) -> List[OutputParam]:
|
| 716 |
+
return [
|
| 717 |
+
OutputParam(
|
| 718 |
+
"kv_cache",
|
| 719 |
+
type_hint=List[Dict],
|
| 720 |
+
description="Initialized KV cache (list of dicts per transformer block)",
|
| 721 |
+
),
|
| 722 |
+
OutputParam(
|
| 723 |
+
"crossattn_cache",
|
| 724 |
+
type_hint=List[Dict],
|
| 725 |
+
description="Initialized cross-attention cache",
|
| 726 |
+
),
|
| 727 |
+
OutputParam(
|
| 728 |
+
"local_attn_size",
|
| 729 |
+
),
|
| 730 |
+
]
|
| 731 |
+
|
| 732 |
+
@torch.no_grad()
|
| 733 |
+
def __call__(
|
| 734 |
+
self, components: ModularPipeline, state: PipelineState
|
| 735 |
+
) -> PipelineState:
|
| 736 |
+
block_state = self.get_block_state(state)
|
| 737 |
+
batch_size = 1 # Streaming always uses batch_size=1
|
| 738 |
+
|
| 739 |
+
# Get existing caches if they exist
|
| 740 |
+
kv_cache = block_state.kv_cache
|
| 741 |
+
crossattn_cache = block_state.crossattn_cache
|
| 742 |
+
|
| 743 |
+
if block_state.crossattn_cache is None or block_state.update_prompt_embeds:
|
| 744 |
+
block_state.crossattn_cache = _initialize_crossattn_cache(
|
| 745 |
+
components,
|
| 746 |
+
crossattn_cache,
|
| 747 |
+
batch_size,
|
| 748 |
+
components.transformer.dtype,
|
| 749 |
+
components.transformer.device,
|
| 750 |
+
)
|
| 751 |
+
|
| 752 |
+
block_state.local_attn_size = (
|
| 753 |
+
components.config.kv_cache_num_frames
|
| 754 |
+
+ components.config.num_frames_per_block
|
| 755 |
+
)
|
| 756 |
+
for block in components.transformer.blocks:
|
| 757 |
+
block.self_attn.local_attn_size = -1
|
| 758 |
+
for block in components.transformer.blocks:
|
| 759 |
+
block.self_attn.num_frame_per_block = components.config.num_frames_per_block
|
| 760 |
+
|
| 761 |
+
block_state.kv_cache = _initialize_kv_cache(
|
| 762 |
+
components,
|
| 763 |
+
kv_cache,
|
| 764 |
+
batch_size,
|
| 765 |
+
components.transformer.dtype,
|
| 766 |
+
components.transformer.device,
|
| 767 |
+
block_state.local_attn_size,
|
| 768 |
+
components.config.frame_seq_length,
|
| 769 |
+
)
|
| 770 |
+
|
| 771 |
+
self.set_block_state(state, block_state)
|
| 772 |
+
return components, state
|
| 773 |
+
|
| 774 |
+
|
| 775 |
+
class WanRTStreamingRecomputeKVCache(ModularPipelineBlocks):
|
| 776 |
+
@property
|
| 777 |
+
def inputs(self) -> List[InputParam]:
|
| 778 |
+
return [
|
| 779 |
+
InputParam(
|
| 780 |
+
"latents",
|
| 781 |
+
type_hint=torch.Tensor,
|
| 782 |
+
description="Current block latents [B, C, num_frames_per_block, H, W]",
|
| 783 |
+
),
|
| 784 |
+
InputParam(
|
| 785 |
+
"num_frames_per_block",
|
| 786 |
+
type_hint=int,
|
| 787 |
+
description="Number of frames per block",
|
| 788 |
+
),
|
| 789 |
+
InputParam(
|
| 790 |
+
"block_idx",
|
| 791 |
+
type_hint=int,
|
| 792 |
+
description="Current block index to process",
|
| 793 |
+
),
|
| 794 |
+
InputParam(
|
| 795 |
+
"block_mask",
|
| 796 |
+
description="Block-wise causal attention mask",
|
| 797 |
+
),
|
| 798 |
+
InputParam(
|
| 799 |
+
"current_start_frame",
|
| 800 |
+
type_hint=int,
|
| 801 |
+
description="Starting frame index for current block",
|
| 802 |
+
),
|
| 803 |
+
InputParam(
|
| 804 |
+
"videos",
|
| 805 |
+
type_hint=torch.Tensor,
|
| 806 |
+
description="Video frames for context encoding",
|
| 807 |
+
),
|
| 808 |
+
InputParam(
|
| 809 |
+
"final_latents",
|
| 810 |
+
type_hint=torch.Tensor,
|
| 811 |
+
description="Full latent buffer [B, C, total_frames, H, W]",
|
| 812 |
+
),
|
| 813 |
+
InputParam(
|
| 814 |
+
"prompt_embeds",
|
| 815 |
+
type_hint=torch.Tensor,
|
| 816 |
+
description="Text embeddings to guide generation",
|
| 817 |
+
),
|
| 818 |
+
InputParam(
|
| 819 |
+
"kv_cache",
|
| 820 |
+
type_hint=torch.Tensor,
|
| 821 |
+
description="Key-value cache for attention",
|
| 822 |
+
),
|
| 823 |
+
InputParam(
|
| 824 |
+
"crossattn_cache",
|
| 825 |
+
type_hint=torch.Tensor,
|
| 826 |
+
description="Cross-attention cache",
|
| 827 |
+
),
|
| 828 |
+
InputParam(
|
| 829 |
+
"encoder_cache",
|
| 830 |
+
description="Encoder feature cache",
|
| 831 |
+
),
|
| 832 |
+
InputParam(
|
| 833 |
+
"frame_cache_context",
|
| 834 |
+
description="Cached context frames for reencoding",
|
| 835 |
+
),
|
| 836 |
+
InputParam(
|
| 837 |
+
"local_attn_size",
|
| 838 |
+
),
|
| 839 |
+
]
|
| 840 |
+
|
| 841 |
+
@property
|
| 842 |
+
def expected_configs(self) -> List[ConfigSpec]:
|
| 843 |
+
return [ConfigSpec("seq_length", 32760)]
|
| 844 |
+
|
| 845 |
+
def prepare_latents(self, components, block_state):
|
| 846 |
+
frames = block_state.frame_cache_context[0].half()
|
| 847 |
+
|
| 848 |
+
components.vae._enc_feat_map = [None] * 55
|
| 849 |
+
latents = retrieve_latents(components.vae.encode(frames), sample_mode="argmax")
|
| 850 |
+
latents_mean = (
|
| 851 |
+
torch.tensor(components.vae.config.latents_mean)
|
| 852 |
+
.view(1, components.vae.config.z_dim, 1, 1, 1)
|
| 853 |
+
.to(latents.device, latents.dtype)
|
| 854 |
+
)
|
| 855 |
+
latents_std = 1.0 / torch.tensor(components.vae.config.latents_std).view(
|
| 856 |
+
1, components.vae.config.z_dim, 1, 1, 1
|
| 857 |
+
).to(latents.device, latents.dtype)
|
| 858 |
+
latents = (latents - latents_mean) * latents_std
|
| 859 |
+
|
| 860 |
+
return latents.to(components.transformer.dtype)
|
| 861 |
+
|
| 862 |
+
def get_context_frames(self, components, block_state):
|
| 863 |
+
current_kv_cache_num_frames = components.config.kv_cache_num_frames
|
| 864 |
+
context_frames = block_state.final_latents[
|
| 865 |
+
:, :, : block_state.current_start_frame
|
| 866 |
+
]
|
| 867 |
+
|
| 868 |
+
if (
|
| 869 |
+
block_state.block_idx - 1
|
| 870 |
+
) * block_state.num_frames_per_block < current_kv_cache_num_frames:
|
| 871 |
+
if current_kv_cache_num_frames == 1:
|
| 872 |
+
context_frames = context_frames[:, :, :1]
|
| 873 |
+
else:
|
| 874 |
+
context_frames = torch.cat(
|
| 875 |
+
(
|
| 876 |
+
context_frames[:, :, :1],
|
| 877 |
+
context_frames[:, :, 1:][
|
| 878 |
+
:, :, -current_kv_cache_num_frames + 1 :
|
| 879 |
+
],
|
| 880 |
+
),
|
| 881 |
+
dim=2,
|
| 882 |
+
)
|
| 883 |
+
else:
|
| 884 |
+
context_frames = context_frames[:, :, 1:][
|
| 885 |
+
:, :, -current_kv_cache_num_frames + 1 :
|
| 886 |
+
]
|
| 887 |
+
first_frame_latent = self.prepare_latents(components, block_state)
|
| 888 |
+
first_frame_latent = first_frame_latent.to(block_state.latents)
|
| 889 |
+
context_frames = torch.cat((first_frame_latent, context_frames), dim=2)
|
| 890 |
+
|
| 891 |
+
return context_frames
|
| 892 |
+
|
| 893 |
+
def __call__(self, components, state):
|
| 894 |
+
block_state = self.get_block_state(state)
|
| 895 |
+
if block_state.block_idx == 0:
|
| 896 |
+
return components, state
|
| 897 |
+
|
| 898 |
+
start_frame = min(
|
| 899 |
+
block_state.current_start_frame, components.config.kv_cache_num_frames
|
| 900 |
+
)
|
| 901 |
+
context_frames = self.get_context_frames(components, block_state)
|
| 902 |
+
block_state.block_mask = (
|
| 903 |
+
components.transformer._prepare_blockwise_causal_attn_mask(
|
| 904 |
+
components.transformer.device,
|
| 905 |
+
num_frames=context_frames.shape[2],
|
| 906 |
+
frame_seqlen=components.config.frame_seq_length,
|
| 907 |
+
num_frame_per_block=block_state.num_frames_per_block,
|
| 908 |
+
local_attn_size=-1,
|
| 909 |
+
)
|
| 910 |
+
)
|
| 911 |
+
components.transformer.block_mask = block_state.block_mask
|
| 912 |
+
context_timestep = torch.zeros(
|
| 913 |
+
(context_frames.shape[0], context_frames.shape[2]),
|
| 914 |
+
device=components.transformer.device,
|
| 915 |
+
dtype=torch.int64,
|
| 916 |
+
)
|
| 917 |
+
components.transformer(
|
| 918 |
+
x=context_frames.to(components.transformer.dtype),
|
| 919 |
+
t=context_timestep,
|
| 920 |
+
context=block_state.prompt_embeds.to(components.transformer.dtype),
|
| 921 |
+
kv_cache=block_state.kv_cache,
|
| 922 |
+
seq_len=components.config.seq_length,
|
| 923 |
+
crossattn_cache=block_state.crossattn_cache,
|
| 924 |
+
current_start=start_frame * components.config.frame_seq_length,
|
| 925 |
+
cache_start=None,
|
| 926 |
+
)
|
| 927 |
+
components.transformer.block_mask = None
|
| 928 |
+
|
| 929 |
+
return components, state
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
class WanRTStreamingBeforeDenoiseStep(SequentialPipelineBlocks):
|
| 933 |
+
block_classes = [
|
| 934 |
+
WanRTStreamingSetTimestepsStep,
|
| 935 |
+
WanRTStreamingPrepareLatentsStep,
|
| 936 |
+
WanRTStreamingExtractBlockLatentsStep,
|
| 937 |
+
WanRTStreamingSetupKVCache,
|
| 938 |
+
WanRTStreamingRecomputeKVCache,
|
| 939 |
+
]
|
| 940 |
+
block_names = [
|
| 941 |
+
"set_timesteps",
|
| 942 |
+
"prepare_latents",
|
| 943 |
+
"extract_block_init_latents",
|
| 944 |
+
"setup_kv_cache",
|
| 945 |
+
"recompute_kv_cache",
|
| 946 |
+
]
|
| 947 |
+
|
| 948 |
+
@property
|
| 949 |
+
def description(self):
|
| 950 |
+
return (
|
| 951 |
+
"Before denoise step that prepare the inputs for the denoise step.\n"
|
| 952 |
+
+ "This is a sequential pipeline blocks:\n"
|
| 953 |
+
+ " - `WanRTInputStep` is used to adjust the batch size of the model inputs\n"
|
| 954 |
+
+ " - `WanRTSetTimestepsStep` is used to set the timesteps\n"
|
| 955 |
+
+ " - `WanRTPrepareLatentsStep` is used to prepare the latents\n"
|
| 956 |
+
)
|
decoders.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Any, List, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import numpy as np
|
| 18 |
+
import PIL
|
| 19 |
+
import torch
|
| 20 |
+
|
| 21 |
+
from diffusers.configuration_utils import FrozenDict
|
| 22 |
+
from diffusers.models import AutoencoderKLWan
|
| 23 |
+
from diffusers.utils import logging
|
| 24 |
+
from diffusers.video_processor import VideoProcessor
|
| 25 |
+
from diffusers.modular_pipelines import ModularPipelineBlocks, PipelineState
|
| 26 |
+
from diffusers.modular_pipelines.modular_pipeline_utils import (
|
| 27 |
+
ComponentSpec,
|
| 28 |
+
InputParam,
|
| 29 |
+
OutputParam,
|
| 30 |
+
)
|
| 31 |
+
import types
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class WanRTDecodeStep(ModularPipelineBlocks):
|
| 38 |
+
model_name = "WanRT"
|
| 39 |
+
decoder_cache = []
|
| 40 |
+
|
| 41 |
+
@property
|
| 42 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 43 |
+
return [
|
| 44 |
+
ComponentSpec(
|
| 45 |
+
"vae",
|
| 46 |
+
AutoencoderKLWan,
|
| 47 |
+
repo="Wan-AI/Wan2.1-T2V-14B-Diffusers",
|
| 48 |
+
subfolder="vae",
|
| 49 |
+
),
|
| 50 |
+
ComponentSpec(
|
| 51 |
+
"video_processor",
|
| 52 |
+
VideoProcessor,
|
| 53 |
+
config=FrozenDict({"vae_scale_factor": 8}),
|
| 54 |
+
default_creation_method="from_config",
|
| 55 |
+
),
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
@property
|
| 59 |
+
def description(self) -> str:
|
| 60 |
+
return "Step that decodes the denoised latents into images"
|
| 61 |
+
|
| 62 |
+
@property
|
| 63 |
+
def inputs(self) -> List[Tuple[str, Any]]:
|
| 64 |
+
return [
|
| 65 |
+
InputParam("output_type", default="pil"),
|
| 66 |
+
InputParam(
|
| 67 |
+
"latents",
|
| 68 |
+
required=True,
|
| 69 |
+
type_hint=torch.Tensor,
|
| 70 |
+
description="The denoised latents from the denoising step",
|
| 71 |
+
),
|
| 72 |
+
InputParam(
|
| 73 |
+
"frame_cache_context",
|
| 74 |
+
description="The denoised latents from the denoising step",
|
| 75 |
+
),
|
| 76 |
+
InputParam(
|
| 77 |
+
"block_idx",
|
| 78 |
+
description="The denoised latents from the denoising step",
|
| 79 |
+
),
|
| 80 |
+
InputParam(
|
| 81 |
+
"decoder_cache",
|
| 82 |
+
description="The denoised latents from the denoising step",
|
| 83 |
+
),
|
| 84 |
+
]
|
| 85 |
+
|
| 86 |
+
@property
|
| 87 |
+
def intermediate_outputs(self) -> List[str]:
|
| 88 |
+
return [
|
| 89 |
+
OutputParam(
|
| 90 |
+
"videos",
|
| 91 |
+
type_hint=Union[
|
| 92 |
+
List[List[PIL.Image.Image]], List[torch.Tensor], List[np.ndarray]
|
| 93 |
+
],
|
| 94 |
+
description="The generated videos, can be a PIL.Image.Image, torch.Tensor or a numpy array",
|
| 95 |
+
)
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
@torch.no_grad()
|
| 99 |
+
def __call__(self, components, state: PipelineState) -> PipelineState:
|
| 100 |
+
block_state = self.get_block_state(state)
|
| 101 |
+
vae_dtype = components.vae.dtype
|
| 102 |
+
|
| 103 |
+
# Disable clearing cache
|
| 104 |
+
if block_state.block_idx == 0:
|
| 105 |
+
components.vae.clear_cache()
|
| 106 |
+
components.vae.clear_cache = lambda: None
|
| 107 |
+
components.vae._feat_map = [None] * 55
|
| 108 |
+
|
| 109 |
+
if block_state.block_idx != 0:
|
| 110 |
+
components.vae._feat_map = block_state.decoder_cache
|
| 111 |
+
|
| 112 |
+
if not block_state.output_type == "latent":
|
| 113 |
+
latents = block_state.latents.to(components.vae.device)
|
| 114 |
+
|
| 115 |
+
# Create tensors directly on target device and dtype to avoid redundant conversions
|
| 116 |
+
latents_mean = torch.tensor(
|
| 117 |
+
components.vae.config.latents_mean,
|
| 118 |
+
device=latents.device,
|
| 119 |
+
dtype=latents.dtype,
|
| 120 |
+
).view(1, components.vae.config.z_dim, 1, 1, 1)
|
| 121 |
+
latents_std = 1.0 / torch.tensor(
|
| 122 |
+
components.vae.config.latents_std,
|
| 123 |
+
device=latents.device,
|
| 124 |
+
dtype=latents.dtype,
|
| 125 |
+
).view(1, components.vae.config.z_dim, 1, 1, 1)
|
| 126 |
+
|
| 127 |
+
latents = latents / latents_std + latents_mean
|
| 128 |
+
latents = latents.to(vae_dtype)
|
| 129 |
+
|
| 130 |
+
videos = components.vae.decode(latents, return_dict=False)[0]
|
| 131 |
+
|
| 132 |
+
else:
|
| 133 |
+
block_state.videos = block_state.latents
|
| 134 |
+
|
| 135 |
+
block_state.decoder_cache = components.vae._feat_map
|
| 136 |
+
block_state.frame_cache_context.extend(videos.split(1, dim=2))
|
| 137 |
+
|
| 138 |
+
videos = components.video_processor.postprocess_video(
|
| 139 |
+
videos, output_type=block_state.output_type
|
| 140 |
+
)
|
| 141 |
+
block_state.videos = videos
|
| 142 |
+
|
| 143 |
+
self.set_block_state(state, block_state)
|
| 144 |
+
|
| 145 |
+
return components, state
|
denoise.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Any, List, Tuple
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
from diffusers.configuration_utils import FrozenDict
|
| 20 |
+
from diffusers.guiders import ClassifierFreeGuidance
|
| 21 |
+
from diffusers.models import AutoModel
|
| 22 |
+
from diffusers.schedulers import UniPCMultistepScheduler
|
| 23 |
+
from diffusers.utils import logging
|
| 24 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 25 |
+
from diffusers.modular_pipelines import (
|
| 26 |
+
BlockState,
|
| 27 |
+
LoopSequentialPipelineBlocks,
|
| 28 |
+
ModularPipelineBlocks,
|
| 29 |
+
PipelineState,
|
| 30 |
+
ModularPipeline,
|
| 31 |
+
)
|
| 32 |
+
from diffusers.modular_pipelines.modular_pipeline_utils import (
|
| 33 |
+
ComponentSpec,
|
| 34 |
+
InputParam,
|
| 35 |
+
OutputParam,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class WanRTStreamingLoopDenoiser(ModularPipelineBlocks):
|
| 43 |
+
model_name = "WanRTStreaming"
|
| 44 |
+
|
| 45 |
+
@property
|
| 46 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 47 |
+
return [ComponentSpec("transformer", AutoModel)]
|
| 48 |
+
|
| 49 |
+
@property
|
| 50 |
+
def description(self) -> str:
|
| 51 |
+
return (
|
| 52 |
+
"Step within the denoising loop that denoise the latents with guidance. "
|
| 53 |
+
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
| 54 |
+
"object (e.g. `WanRTStreamingDenoiseLoopWrapper`)"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
@property
|
| 58 |
+
def inputs(self) -> List[Tuple[str, Any]]:
|
| 59 |
+
return [
|
| 60 |
+
InputParam("attention_kwargs"),
|
| 61 |
+
InputParam("block_idx"),
|
| 62 |
+
InputParam(
|
| 63 |
+
"latents",
|
| 64 |
+
required=True,
|
| 65 |
+
type_hint=torch.Tensor,
|
| 66 |
+
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
| 67 |
+
),
|
| 68 |
+
InputParam(
|
| 69 |
+
"prompt_embeds",
|
| 70 |
+
required=True,
|
| 71 |
+
type_hint=torch.Tensor,
|
| 72 |
+
),
|
| 73 |
+
InputParam(
|
| 74 |
+
"kv_cache",
|
| 75 |
+
required=True,
|
| 76 |
+
type_hint=torch.Tensor,
|
| 77 |
+
),
|
| 78 |
+
InputParam(
|
| 79 |
+
"crossattn_cache",
|
| 80 |
+
required=True,
|
| 81 |
+
type_hint=torch.Tensor,
|
| 82 |
+
),
|
| 83 |
+
InputParam(
|
| 84 |
+
"current_start_frame",
|
| 85 |
+
required=True,
|
| 86 |
+
type_hint=torch.Tensor,
|
| 87 |
+
),
|
| 88 |
+
InputParam(
|
| 89 |
+
"num_inference_steps",
|
| 90 |
+
required=True,
|
| 91 |
+
type_hint=int,
|
| 92 |
+
default=4,
|
| 93 |
+
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
|
| 94 |
+
),
|
| 95 |
+
InputParam(
|
| 96 |
+
kwargs_type="guider_input_fields",
|
| 97 |
+
description=(
|
| 98 |
+
"All conditional model inputs that need to be prepared with guider. "
|
| 99 |
+
"It should contain prompt_embeds/negative_prompt_embeds. "
|
| 100 |
+
"Please add `kwargs_type=guider_input_fields` to their parameter spec (`OutputParam`) when they are created and added to the pipeline state"
|
| 101 |
+
),
|
| 102 |
+
),
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
@torch.no_grad()
|
| 106 |
+
def __call__(
|
| 107 |
+
self,
|
| 108 |
+
components: ModularPipeline,
|
| 109 |
+
block_state: BlockState,
|
| 110 |
+
i: int,
|
| 111 |
+
t: torch.Tensor,
|
| 112 |
+
) -> PipelineState:
|
| 113 |
+
start_frame = min(
|
| 114 |
+
block_state.current_start_frame, components.config.kv_cache_num_frames
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
block_state.noise_pred = components.transformer(
|
| 118 |
+
x=block_state.latents,
|
| 119 |
+
t=t.expand(block_state.latents.shape[0], block_state.num_frames_per_block),
|
| 120 |
+
context=block_state.prompt_embeds,
|
| 121 |
+
kv_cache=block_state.kv_cache,
|
| 122 |
+
seq_len=components.config.seq_length,
|
| 123 |
+
crossattn_cache=block_state.crossattn_cache,
|
| 124 |
+
current_start=start_frame * components.config.frame_seq_length,
|
| 125 |
+
cache_start=start_frame * components.config.frame_seq_length,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
return components, block_state
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class WanRTStreamingLoopAfterDenoiser(ModularPipelineBlocks):
|
| 132 |
+
model_name = "WanRTStreaming"
|
| 133 |
+
|
| 134 |
+
@property
|
| 135 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 136 |
+
return [
|
| 137 |
+
ComponentSpec("scheduler", UniPCMultistepScheduler),
|
| 138 |
+
]
|
| 139 |
+
|
| 140 |
+
@property
|
| 141 |
+
def description(self) -> str:
|
| 142 |
+
return (
|
| 143 |
+
"step within the denoising loop that update the latents. "
|
| 144 |
+
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
| 145 |
+
"object (e.g. `WanRTStreamingDenoiseLoopWrapper`)"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
@property
|
| 149 |
+
def inputs(self) -> List[Tuple[str, Any]]:
|
| 150 |
+
return []
|
| 151 |
+
|
| 152 |
+
@property
|
| 153 |
+
def intermediate_inputs(self) -> List[str]:
|
| 154 |
+
return [
|
| 155 |
+
InputParam("generator"),
|
| 156 |
+
InputParam("block_id"),
|
| 157 |
+
]
|
| 158 |
+
|
| 159 |
+
@property
|
| 160 |
+
def intermediate_outputs(self) -> List[OutputParam]:
|
| 161 |
+
return [
|
| 162 |
+
OutputParam(
|
| 163 |
+
"latents", type_hint=torch.Tensor, description="The denoised latents"
|
| 164 |
+
)
|
| 165 |
+
]
|
| 166 |
+
|
| 167 |
+
@torch.no_grad()
|
| 168 |
+
def __call__(
|
| 169 |
+
self,
|
| 170 |
+
components: ModularPipeline,
|
| 171 |
+
block_state: BlockState,
|
| 172 |
+
i: int,
|
| 173 |
+
t: torch.Tensor,
|
| 174 |
+
):
|
| 175 |
+
# Perform scheduler step using the predicted output
|
| 176 |
+
latents_dtype = block_state.latents.dtype
|
| 177 |
+
timesteps = block_state.all_timesteps
|
| 178 |
+
sigmas = block_state.sigmas
|
| 179 |
+
|
| 180 |
+
timestep_id = torch.argmin((timesteps - t).abs())
|
| 181 |
+
sigma_t = sigmas[timestep_id]
|
| 182 |
+
|
| 183 |
+
# Perform computation in double precision, then convert back once
|
| 184 |
+
latents = (
|
| 185 |
+
block_state.latents.double()
|
| 186 |
+
- sigma_t.double() * block_state.noise_pred.double()
|
| 187 |
+
).to(latents_dtype)
|
| 188 |
+
|
| 189 |
+
block_state.latents = latents
|
| 190 |
+
|
| 191 |
+
return components, block_state
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class WanRTStreamingDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
|
| 195 |
+
model_name = "WanRTStreaming"
|
| 196 |
+
|
| 197 |
+
@property
|
| 198 |
+
def description(self) -> str:
|
| 199 |
+
return (
|
| 200 |
+
"Streaming denoising loop that processes a single block with persistent KV cache. "
|
| 201 |
+
"Recomputes cache from context frames, denoises current block, and updates cache."
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
def add_noise(self, components, block_state, sample, noise, timestep, index):
|
| 205 |
+
timesteps = block_state.all_timesteps
|
| 206 |
+
sigmas = block_state.sigmas.to(timesteps.device)
|
| 207 |
+
|
| 208 |
+
if timestep.ndim == 2:
|
| 209 |
+
timestep = timestep.flatten(0, 1)
|
| 210 |
+
|
| 211 |
+
timestep_id = torch.argmin(
|
| 212 |
+
(timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1
|
| 213 |
+
)
|
| 214 |
+
sigma = sigmas[timestep_id].reshape(-1, 1, 1, 1)
|
| 215 |
+
sample = (
|
| 216 |
+
1 - sigma.double()
|
| 217 |
+
) * sample.double() + sigma.double() * noise.double()
|
| 218 |
+
sample = sample.type_as(noise)
|
| 219 |
+
|
| 220 |
+
return sample
|
| 221 |
+
|
| 222 |
+
@property
|
| 223 |
+
def loop_inputs(self) -> List[InputParam]:
|
| 224 |
+
return [
|
| 225 |
+
InputParam(
|
| 226 |
+
"timesteps",
|
| 227 |
+
required=True,
|
| 228 |
+
type_hint=torch.Tensor,
|
| 229 |
+
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
|
| 230 |
+
),
|
| 231 |
+
InputParam(
|
| 232 |
+
"all_timesteps",
|
| 233 |
+
required=True,
|
| 234 |
+
type_hint=torch.Tensor,
|
| 235 |
+
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
|
| 236 |
+
),
|
| 237 |
+
InputParam(
|
| 238 |
+
"sigmas",
|
| 239 |
+
required=True,
|
| 240 |
+
type_hint=torch.Tensor,
|
| 241 |
+
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
|
| 242 |
+
),
|
| 243 |
+
InputParam("final_latents", type_hint=torch.Tensor),
|
| 244 |
+
InputParam(
|
| 245 |
+
"num_inference_steps",
|
| 246 |
+
required=True,
|
| 247 |
+
type_hint=int,
|
| 248 |
+
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
|
| 249 |
+
),
|
| 250 |
+
InputParam(
|
| 251 |
+
"num_frames_per_block",
|
| 252 |
+
required=True,
|
| 253 |
+
type_hint=int,
|
| 254 |
+
default=3,
|
| 255 |
+
),
|
| 256 |
+
InputParam(
|
| 257 |
+
"current_start_frame",
|
| 258 |
+
required=True,
|
| 259 |
+
type_hint=int,
|
| 260 |
+
),
|
| 261 |
+
InputParam(
|
| 262 |
+
"block_idx",
|
| 263 |
+
),
|
| 264 |
+
InputParam(
|
| 265 |
+
"generator",
|
| 266 |
+
),
|
| 267 |
+
]
|
| 268 |
+
|
| 269 |
+
@torch.no_grad()
|
| 270 |
+
def __call__(
|
| 271 |
+
self, components: ModularPipeline, state: PipelineState
|
| 272 |
+
) -> PipelineState:
|
| 273 |
+
block_state = self.get_block_state(state)
|
| 274 |
+
|
| 275 |
+
for i, t in enumerate(block_state.timesteps):
|
| 276 |
+
components, block_state = self.loop_step(components, block_state, i=i, t=t)
|
| 277 |
+
if i < (block_state.num_inference_steps - 1):
|
| 278 |
+
t1 = block_state.timesteps[i + 1]
|
| 279 |
+
|
| 280 |
+
block_state.latents = (
|
| 281 |
+
self.add_noise(
|
| 282 |
+
components,
|
| 283 |
+
block_state,
|
| 284 |
+
block_state.latents.transpose(1, 2).squeeze(0),
|
| 285 |
+
randn_tensor(
|
| 286 |
+
block_state.latents.transpose(1, 2).squeeze(0).shape,
|
| 287 |
+
device=block_state.latents.device,
|
| 288 |
+
dtype=block_state.latents.dtype,
|
| 289 |
+
generator=block_state.generator,
|
| 290 |
+
),
|
| 291 |
+
t1.expand(
|
| 292 |
+
block_state.latents.shape[0],
|
| 293 |
+
block_state.num_frames_per_block,
|
| 294 |
+
),
|
| 295 |
+
i,
|
| 296 |
+
)
|
| 297 |
+
.unsqueeze(0)
|
| 298 |
+
.transpose(1, 2)
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
# Update the state
|
| 302 |
+
block_state.final_latents[
|
| 303 |
+
:,
|
| 304 |
+
:,
|
| 305 |
+
block_state.current_start_frame : block_state.current_start_frame
|
| 306 |
+
+ block_state.num_frames_per_block,
|
| 307 |
+
] = block_state.latents
|
| 308 |
+
|
| 309 |
+
self.set_block_state(state, block_state)
|
| 310 |
+
|
| 311 |
+
return components, state
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
class WanRTStreamingDenoiseStep(WanRTStreamingDenoiseLoopWrapper):
|
| 315 |
+
block_classes = [
|
| 316 |
+
WanRTStreamingLoopDenoiser,
|
| 317 |
+
WanRTStreamingLoopAfterDenoiser,
|
| 318 |
+
]
|
| 319 |
+
block_names = ["denoiser", "after_denoiser"]
|
| 320 |
+
|
| 321 |
+
@property
|
| 322 |
+
def description(self) -> str:
|
| 323 |
+
return (
|
| 324 |
+
"Denoise step that iteratively denoise the latents. \n"
|
| 325 |
+
"Its loop logic is defined in `WanRTStreamingDenoiseLoopWrapper.__call__` method \n"
|
| 326 |
+
"At each iteration, it runs blocks defined in `sub_blocks` sequencially:\n"
|
| 327 |
+
" - `WanRTStreamingLoopDenoiser`\n"
|
| 328 |
+
" - `WanRTStreamingLoopAfterDenoiser`\n"
|
| 329 |
+
"This block supports both text2vid tasks."
|
| 330 |
+
)
|
encoders.py
ADDED
|
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import html
|
| 16 |
+
from typing import List, Optional, Union
|
| 17 |
+
|
| 18 |
+
import regex as re
|
| 19 |
+
import torch
|
| 20 |
+
from transformers import AutoTokenizer, UMT5EncoderModel
|
| 21 |
+
|
| 22 |
+
from diffusers.configuration_utils import FrozenDict
|
| 23 |
+
from diffusers.guiders import ClassifierFreeGuidance
|
| 24 |
+
from diffusers.utils import is_ftfy_available, logging
|
| 25 |
+
from diffusers.modular_pipelines import ModularPipelineBlocks, PipelineState
|
| 26 |
+
from diffusers.modular_pipelines.modular_pipeline_utils import (
|
| 27 |
+
ComponentSpec,
|
| 28 |
+
ConfigSpec,
|
| 29 |
+
InputParam,
|
| 30 |
+
OutputParam,
|
| 31 |
+
)
|
| 32 |
+
from diffusers.modular_pipelines import WanModularPipeline
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
if is_ftfy_available():
|
| 36 |
+
import ftfy
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def basic_clean(text):
|
| 43 |
+
text = ftfy.fix_text(text)
|
| 44 |
+
text = html.unescape(html.unescape(text))
|
| 45 |
+
return text.strip()
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def whitespace_clean(text):
|
| 49 |
+
text = re.sub(r"\s+", " ", text)
|
| 50 |
+
text = text.strip()
|
| 51 |
+
return text
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def prompt_clean(text):
|
| 55 |
+
text = whitespace_clean(basic_clean(text))
|
| 56 |
+
return text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class WanRTStreamingTextEncoderStep(ModularPipelineBlocks):
|
| 60 |
+
model_name = "WanRTStreaming"
|
| 61 |
+
|
| 62 |
+
@property
|
| 63 |
+
def description(self) -> str:
|
| 64 |
+
return "Text Encoder step that generate text_embeddings to guide the video generation"
|
| 65 |
+
|
| 66 |
+
@property
|
| 67 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 68 |
+
return [
|
| 69 |
+
ComponentSpec("text_encoder", UMT5EncoderModel),
|
| 70 |
+
ComponentSpec("tokenizer", AutoTokenizer),
|
| 71 |
+
ComponentSpec(
|
| 72 |
+
"guider",
|
| 73 |
+
ClassifierFreeGuidance,
|
| 74 |
+
config=FrozenDict({"guidance_scale": 5.0}),
|
| 75 |
+
default_creation_method="from_config",
|
| 76 |
+
),
|
| 77 |
+
]
|
| 78 |
+
|
| 79 |
+
@property
|
| 80 |
+
def expected_configs(self) -> List[ConfigSpec]:
|
| 81 |
+
return []
|
| 82 |
+
|
| 83 |
+
@property
|
| 84 |
+
def inputs(self) -> List[InputParam]:
|
| 85 |
+
return [
|
| 86 |
+
InputParam("prompt"),
|
| 87 |
+
InputParam("negative_prompt"),
|
| 88 |
+
InputParam(
|
| 89 |
+
"prompt_embeds",
|
| 90 |
+
type_hint=torch.Tensor,
|
| 91 |
+
description="text embeddings used to guide the image generation",
|
| 92 |
+
),
|
| 93 |
+
InputParam(
|
| 94 |
+
"negative_prompt_embeds",
|
| 95 |
+
type_hint=torch.Tensor,
|
| 96 |
+
description="negative text embeddings used to guide the image generation",
|
| 97 |
+
),
|
| 98 |
+
InputParam("attention_kwargs"),
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
@property
|
| 102 |
+
def intermediate_outputs(self) -> List[OutputParam]:
|
| 103 |
+
return [
|
| 104 |
+
OutputParam(
|
| 105 |
+
"prompt_embeds",
|
| 106 |
+
type_hint=torch.Tensor,
|
| 107 |
+
kwargs_type="denoiser_input_fields",
|
| 108 |
+
description="text embeddings used to guide the image generation",
|
| 109 |
+
),
|
| 110 |
+
OutputParam(
|
| 111 |
+
"negative_prompt_embeds",
|
| 112 |
+
type_hint=torch.Tensor,
|
| 113 |
+
kwargs_type="denoiser_input_fields",
|
| 114 |
+
description="negative text embeddings used to guide the image generation",
|
| 115 |
+
),
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
@staticmethod
|
| 119 |
+
def check_inputs(block_state):
|
| 120 |
+
if block_state.prompt is not None and (
|
| 121 |
+
not isinstance(block_state.prompt, str)
|
| 122 |
+
and not isinstance(block_state.prompt, list)
|
| 123 |
+
):
|
| 124 |
+
raise ValueError(
|
| 125 |
+
f"`prompt` has to be of type `str` or `list` but is {type(block_state.prompt)}"
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
@staticmethod
|
| 129 |
+
def _get_t5_prompt_embeds(
|
| 130 |
+
components,
|
| 131 |
+
prompt: Union[str, List[str]],
|
| 132 |
+
max_sequence_length: int,
|
| 133 |
+
device: torch.device,
|
| 134 |
+
):
|
| 135 |
+
dtype = components.text_encoder.dtype
|
| 136 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 137 |
+
prompt = [prompt_clean(u) for u in prompt]
|
| 138 |
+
|
| 139 |
+
text_inputs = components.tokenizer(
|
| 140 |
+
prompt,
|
| 141 |
+
padding="max_length",
|
| 142 |
+
max_length=max_sequence_length,
|
| 143 |
+
truncation=True,
|
| 144 |
+
add_special_tokens=True,
|
| 145 |
+
return_attention_mask=True,
|
| 146 |
+
return_tensors="pt",
|
| 147 |
+
)
|
| 148 |
+
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
|
| 149 |
+
seq_lens = mask.gt(0).sum(dim=1).long()
|
| 150 |
+
prompt_embeds = components.text_encoder(
|
| 151 |
+
text_input_ids.to(device), mask.to(device)
|
| 152 |
+
).last_hidden_state
|
| 153 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype)
|
| 154 |
+
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
|
| 155 |
+
prompt_embeds = torch.stack(
|
| 156 |
+
[
|
| 157 |
+
torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))])
|
| 158 |
+
for u in prompt_embeds
|
| 159 |
+
],
|
| 160 |
+
dim=0,
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
return prompt_embeds
|
| 164 |
+
|
| 165 |
+
@staticmethod
|
| 166 |
+
def encode_prompt(
|
| 167 |
+
components,
|
| 168 |
+
prompt: str,
|
| 169 |
+
device: Optional[torch.device] = None,
|
| 170 |
+
num_videos_per_prompt: int = 1,
|
| 171 |
+
prepare_unconditional_embeds: bool = True,
|
| 172 |
+
negative_prompt: Optional[str] = None,
|
| 173 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 174 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 175 |
+
max_sequence_length: int = 512,
|
| 176 |
+
):
|
| 177 |
+
r"""
|
| 178 |
+
Encodes the prompt into text encoder hidden states.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 182 |
+
prompt to be encoded
|
| 183 |
+
device: (`torch.device`):
|
| 184 |
+
torch device
|
| 185 |
+
num_videos_per_prompt (`int`):
|
| 186 |
+
number of videos that should be generated per prompt
|
| 187 |
+
prepare_unconditional_embeds (`bool`):
|
| 188 |
+
whether to use prepare unconditional embeddings or not
|
| 189 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 190 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 191 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 192 |
+
less than `1`).
|
| 193 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 194 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 195 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 196 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 197 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 198 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 199 |
+
argument.
|
| 200 |
+
max_sequence_length (`int`, defaults to `512`):
|
| 201 |
+
The maximum number of text tokens to be used for the generation process.
|
| 202 |
+
"""
|
| 203 |
+
device = device or components._execution_device
|
| 204 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 205 |
+
batch_size = len(prompt) if prompt is not None else prompt_embeds.shape[0]
|
| 206 |
+
|
| 207 |
+
if prompt_embeds is None:
|
| 208 |
+
prompt_embeds = WanRTStreamingTextEncoderStep._get_t5_prompt_embeds(
|
| 209 |
+
components, prompt, max_sequence_length, device
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
if prepare_unconditional_embeds and negative_prompt_embeds is None:
|
| 213 |
+
negative_prompt = negative_prompt or ""
|
| 214 |
+
negative_prompt = (
|
| 215 |
+
batch_size * [negative_prompt]
|
| 216 |
+
if isinstance(negative_prompt, str)
|
| 217 |
+
else negative_prompt
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 221 |
+
raise TypeError(
|
| 222 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 223 |
+
f" {type(prompt)}."
|
| 224 |
+
)
|
| 225 |
+
elif batch_size != len(negative_prompt):
|
| 226 |
+
raise ValueError(
|
| 227 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 228 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 229 |
+
" the batch size of `prompt`."
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
negative_prompt_embeds = (
|
| 233 |
+
WanRTStreamingTextEncoderStep._get_t5_prompt_embeds(
|
| 234 |
+
components, negative_prompt, max_sequence_length, device
|
| 235 |
+
)
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 239 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
| 240 |
+
prompt_embeds = prompt_embeds.view(
|
| 241 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
if prepare_unconditional_embeds:
|
| 245 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
| 246 |
+
1, num_videos_per_prompt, 1
|
| 247 |
+
)
|
| 248 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
| 249 |
+
batch_size * num_videos_per_prompt, seq_len, -1
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
return prompt_embeds, negative_prompt_embeds
|
| 253 |
+
|
| 254 |
+
@torch.no_grad()
|
| 255 |
+
def __call__(
|
| 256 |
+
self, components: WanModularPipeline, state: PipelineState
|
| 257 |
+
) -> PipelineState:
|
| 258 |
+
# Get inputs and intermediates
|
| 259 |
+
block_state = self.get_block_state(state)
|
| 260 |
+
self.check_inputs(block_state)
|
| 261 |
+
|
| 262 |
+
block_state.prepare_unconditional_embeds = False
|
| 263 |
+
block_state.device = components._execution_device
|
| 264 |
+
|
| 265 |
+
# Encode input prompt
|
| 266 |
+
(
|
| 267 |
+
block_state.prompt_embeds,
|
| 268 |
+
block_state.negative_prompt_embeds,
|
| 269 |
+
) = WanRTStreamingTextEncoderStep.encode_prompt(
|
| 270 |
+
components,
|
| 271 |
+
block_state.prompt,
|
| 272 |
+
block_state.device,
|
| 273 |
+
1,
|
| 274 |
+
block_state.prepare_unconditional_embeds,
|
| 275 |
+
block_state.negative_prompt,
|
| 276 |
+
prompt_embeds=block_state.prompt_embeds,
|
| 277 |
+
negative_prompt_embeds=block_state.negative_prompt_embeds,
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# Add outputs
|
| 281 |
+
self.set_block_state(state, block_state)
|
| 282 |
+
return components, state
|
modular_blocks.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from diffusers.utils import logging
|
| 16 |
+
from diffusers.modular_pipelines import SequentialPipelineBlocks
|
| 17 |
+
from diffusers.modular_pipelines.modular_pipeline_utils import InsertableDict
|
| 18 |
+
|
| 19 |
+
from .before_denoise import WanRTStreamingBeforeDenoiseStep
|
| 20 |
+
from .decoders import WanRTDecodeStep
|
| 21 |
+
from .encoders import WanRTStreamingTextEncoderStep
|
| 22 |
+
from .denoise import WanRTStreamingDenoiseStep
|
| 23 |
+
|
| 24 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 25 |
+
|
| 26 |
+
TEXT2VIDEO_BLOCKS = InsertableDict(
|
| 27 |
+
[
|
| 28 |
+
("text_encoder", WanRTStreamingTextEncoderStep),
|
| 29 |
+
("before_denoise", WanRTStreamingBeforeDenoiseStep),
|
| 30 |
+
("denoise", WanRTStreamingDenoiseStep),
|
| 31 |
+
("decode", WanRTDecodeStep),
|
| 32 |
+
]
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
ALL_BLOCKS = {
|
| 36 |
+
"text2video": TEXT2VIDEO_BLOCKS,
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class WanStreamingRTBlocks(SequentialPipelineBlocks):
|
| 41 |
+
block_classes = list(TEXT2VIDEO_BLOCKS.copy().values())
|
| 42 |
+
block_names = list(TEXT2VIDEO_BLOCKS.copy().keys())
|
modular_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "WanRTBlocks",
|
| 3 |
+
"_diffusers_version": "0.36.0.dev0",
|
| 4 |
+
"auto_map": {
|
| 5 |
+
"ModularPipelineBlocks": "modular_blocks.WanStreamingRTBlocks"
|
| 6 |
+
}
|
| 7 |
+
}
|
modular_model_index.json
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_blocks_class_name": "WanStreamingRTBlocks",
|
| 3 |
+
"_class_name": "WanRTStreamingPipeline",
|
| 4 |
+
"_diffusers_version": "0.36.0.dev0",
|
| 5 |
+
"frame_seq_length": 1560,
|
| 6 |
+
"kv_cache_num_frames": 3,
|
| 7 |
+
"num_frames_per_block": 3,
|
| 8 |
+
"scheduler": [
|
| 9 |
+
null,
|
| 10 |
+
null,
|
| 11 |
+
{
|
| 12 |
+
"repo": "Wan-AI/Wan2.1-T2V-14B-Diffusers",
|
| 13 |
+
"revision": null,
|
| 14 |
+
"subfolder": "scheduler",
|
| 15 |
+
"type_hint": [
|
| 16 |
+
"diffusers",
|
| 17 |
+
"UniPCMultistepScheduler"
|
| 18 |
+
],
|
| 19 |
+
"variant": null
|
| 20 |
+
}
|
| 21 |
+
],
|
| 22 |
+
"seq_length": 32760,
|
| 23 |
+
"text_encoder": [
|
| 24 |
+
null,
|
| 25 |
+
null,
|
| 26 |
+
{
|
| 27 |
+
"repo": "Wan-AI/Wan2.1-T2V-14B-Diffusers",
|
| 28 |
+
"revision": null,
|
| 29 |
+
"subfolder": "text_encoder",
|
| 30 |
+
"type_hint": [
|
| 31 |
+
"transformers",
|
| 32 |
+
"UMT5EncoderModel"
|
| 33 |
+
],
|
| 34 |
+
"variant": null
|
| 35 |
+
}
|
| 36 |
+
],
|
| 37 |
+
"tokenizer": [
|
| 38 |
+
null,
|
| 39 |
+
null,
|
| 40 |
+
{
|
| 41 |
+
"repo": "Wan-AI/Wan2.1-T2V-14B-Diffusers",
|
| 42 |
+
"revision": null,
|
| 43 |
+
"subfolder": "tokenizer",
|
| 44 |
+
"type_hint": [
|
| 45 |
+
"transformers",
|
| 46 |
+
"T5TokenizerFast"
|
| 47 |
+
],
|
| 48 |
+
"variant": null
|
| 49 |
+
}
|
| 50 |
+
],
|
| 51 |
+
"transformer": [
|
| 52 |
+
null,
|
| 53 |
+
null,
|
| 54 |
+
{
|
| 55 |
+
"repo": "diffusers-internal-dev/krt",
|
| 56 |
+
"revision": null,
|
| 57 |
+
"subfolder": "transformer",
|
| 58 |
+
"type_hint": [
|
| 59 |
+
"diffusers",
|
| 60 |
+
"AutoModel"
|
| 61 |
+
],
|
| 62 |
+
"variant": null
|
| 63 |
+
}
|
| 64 |
+
],
|
| 65 |
+
"vae": [
|
| 66 |
+
null,
|
| 67 |
+
null,
|
| 68 |
+
{
|
| 69 |
+
"repo": "Wan-AI/Wan2.1-T2V-14B-Diffusers",
|
| 70 |
+
"revision": null,
|
| 71 |
+
"subfolder": "vae",
|
| 72 |
+
"type_hint": [
|
| 73 |
+
"diffusers",
|
| 74 |
+
"AutoencoderKLWan"
|
| 75 |
+
],
|
| 76 |
+
"variant": null
|
| 77 |
+
}
|
| 78 |
+
]
|
| 79 |
+
}
|
transformer/__init__.py
ADDED
|
File without changes
|
transformer/attention.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
import torch
|
| 3 |
+
from typing import Optional
|
| 4 |
+
import os
|
| 5 |
+
import warnings
|
| 6 |
+
|
| 7 |
+
# Global state for lazy initialization
|
| 8 |
+
_SAGEATTN_AVAILABLE = None
|
| 9 |
+
_FLASH_ATTN_3_AVAILABLE = None
|
| 10 |
+
_FLASH_ATTN_2_AVAILABLE = None
|
| 11 |
+
_sageattn_func = None
|
| 12 |
+
_flash_attn_func = None
|
| 13 |
+
_flash_attn_interface = None
|
| 14 |
+
_flash_attn = None
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def _init_sageattention():
|
| 18 |
+
"""Lazy initialization for SageAttention."""
|
| 19 |
+
global _SAGEATTN_AVAILABLE, _sageattn_func
|
| 20 |
+
|
| 21 |
+
if _SAGEATTN_AVAILABLE is not None:
|
| 22 |
+
return _SAGEATTN_AVAILABLE
|
| 23 |
+
|
| 24 |
+
_SAGEATTN_AVAILABLE = False
|
| 25 |
+
try:
|
| 26 |
+
if os.getenv("DISABLE_SAGEATTENTION", "0") != "0":
|
| 27 |
+
raise Exception("DISABLE_SAGEATTENTION is set")
|
| 28 |
+
|
| 29 |
+
from sageattention import sageattn
|
| 30 |
+
|
| 31 |
+
@torch.library.custom_op(
|
| 32 |
+
"mylib::sageattn", mutates_args={"q", "k", "v"}, device_types="cuda"
|
| 33 |
+
)
|
| 34 |
+
def sageattn_func(
|
| 35 |
+
q: torch.Tensor,
|
| 36 |
+
k: torch.Tensor,
|
| 37 |
+
v: torch.Tensor,
|
| 38 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 39 |
+
dropout_p: float = 0,
|
| 40 |
+
is_causal: bool = False,
|
| 41 |
+
) -> torch.Tensor:
|
| 42 |
+
return sageattn(
|
| 43 |
+
q, k, v, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
@sageattn_func.register_fake
|
| 47 |
+
def _sageattn_fake(q, k, v, attn_mask=None, dropout_p=0, is_causal=False):
|
| 48 |
+
return torch.empty(*q.shape, device=q.device, dtype=q.dtype)
|
| 49 |
+
|
| 50 |
+
print("SageAttention loaded successfully")
|
| 51 |
+
_sageattn_func = sageattn_func
|
| 52 |
+
_SAGEATTN_AVAILABLE = True
|
| 53 |
+
|
| 54 |
+
except Exception as e:
|
| 55 |
+
print(f"Warning: Could not load sageattention: {str(e)}")
|
| 56 |
+
if isinstance(e, ModuleNotFoundError):
|
| 57 |
+
print("sageattention package is not installed")
|
| 58 |
+
elif isinstance(e, ImportError) and "DLL" in str(e):
|
| 59 |
+
print("sageattention DLL loading error")
|
| 60 |
+
_sageattn_func = None
|
| 61 |
+
|
| 62 |
+
return _SAGEATTN_AVAILABLE
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def _is_hopper_gpu():
|
| 66 |
+
"""Check if the current GPU is a Hopper architecture."""
|
| 67 |
+
if not torch.cuda.is_available():
|
| 68 |
+
return False
|
| 69 |
+
device_name = torch.cuda.get_device_name(0).lower()
|
| 70 |
+
return "h100" in device_name or "hopper" in device_name
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def _init_flash_attention_3():
|
| 74 |
+
"""Lazy initialization for Flash Attention 3."""
|
| 75 |
+
global _FLASH_ATTN_3_AVAILABLE, _flash_attn_func, _flash_attn_interface
|
| 76 |
+
|
| 77 |
+
if _FLASH_ATTN_3_AVAILABLE is not None:
|
| 78 |
+
return _FLASH_ATTN_3_AVAILABLE
|
| 79 |
+
|
| 80 |
+
_FLASH_ATTN_3_AVAILABLE = False
|
| 81 |
+
try:
|
| 82 |
+
from flash_attn import flash_attn_func
|
| 83 |
+
import flash_attn_interface
|
| 84 |
+
|
| 85 |
+
# Always set the function reference if flash_attn is available
|
| 86 |
+
_flash_attn_func = flash_attn_func
|
| 87 |
+
_flash_attn_interface = flash_attn_interface
|
| 88 |
+
# FA3 optimizations only available on Hopper GPUs
|
| 89 |
+
_FLASH_ATTN_3_AVAILABLE = _is_hopper_gpu()
|
| 90 |
+
except ModuleNotFoundError:
|
| 91 |
+
_FLASH_ATTN_3_AVAILABLE = False
|
| 92 |
+
_flash_attn_func = None
|
| 93 |
+
_flash_attn_interface = None
|
| 94 |
+
|
| 95 |
+
return _FLASH_ATTN_3_AVAILABLE
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def _init_flash_attention_2():
|
| 99 |
+
"""Lazy initialization for Flash Attention 2."""
|
| 100 |
+
global _FLASH_ATTN_2_AVAILABLE, _flash_attn
|
| 101 |
+
|
| 102 |
+
if _FLASH_ATTN_2_AVAILABLE is not None:
|
| 103 |
+
return _FLASH_ATTN_2_AVAILABLE
|
| 104 |
+
|
| 105 |
+
_FLASH_ATTN_2_AVAILABLE = False
|
| 106 |
+
try:
|
| 107 |
+
import flash_attn
|
| 108 |
+
|
| 109 |
+
_flash_attn = flash_attn
|
| 110 |
+
_FLASH_ATTN_2_AVAILABLE = True
|
| 111 |
+
except ModuleNotFoundError:
|
| 112 |
+
_FLASH_ATTN_2_AVAILABLE = False
|
| 113 |
+
|
| 114 |
+
return _FLASH_ATTN_2_AVAILABLE
|
| 115 |
+
|
| 116 |
+
__all__ = ["flash_attention", "attention"]
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# Compatibility getters for external code
|
| 120 |
+
def sageattn_func():
|
| 121 |
+
"""Getter for sageattn_func - initializes if needed."""
|
| 122 |
+
_init_sageattention()
|
| 123 |
+
return _sageattn_func
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def SAGEATTN_AVAILABLE():
|
| 127 |
+
"""Getter for SAGEATTN_AVAILABLE - initializes if needed."""
|
| 128 |
+
return _init_sageattention()
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def flash_attention(
|
| 132 |
+
q,
|
| 133 |
+
k,
|
| 134 |
+
v,
|
| 135 |
+
q_lens=None,
|
| 136 |
+
k_lens=None,
|
| 137 |
+
dropout_p=0.0,
|
| 138 |
+
softmax_scale=None,
|
| 139 |
+
q_scale=None,
|
| 140 |
+
causal=False,
|
| 141 |
+
window_size=(-1, -1),
|
| 142 |
+
deterministic=False,
|
| 143 |
+
dtype=torch.bfloat16,
|
| 144 |
+
version=None,
|
| 145 |
+
):
|
| 146 |
+
"""
|
| 147 |
+
q: [B, Lq, Nq, C1].
|
| 148 |
+
k: [B, Lk, Nk, C1].
|
| 149 |
+
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
|
| 150 |
+
q_lens: [B].
|
| 151 |
+
k_lens: [B].
|
| 152 |
+
dropout_p: float. Dropout probability.
|
| 153 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
| 154 |
+
causal: bool. Whether to apply causal attention mask.
|
| 155 |
+
window_size: (left right). If not (-1, -1), apply sliding window local attention.
|
| 156 |
+
deterministic: bool. If True, slightly slower and uses more memory.
|
| 157 |
+
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
|
| 158 |
+
"""
|
| 159 |
+
# Initialize flash attention modules
|
| 160 |
+
flash_attn_3_available = _init_flash_attention_3()
|
| 161 |
+
flash_attn_2_available = _init_flash_attention_2()
|
| 162 |
+
|
| 163 |
+
# Early fallback for simple cases when advanced features aren't needed
|
| 164 |
+
# Only use this path if flash_attn is available but we're not using FA3 features
|
| 165 |
+
if not flash_attn_3_available and _flash_attn_func is not None and q_lens is None and k_lens is None:
|
| 166 |
+
return _flash_attn_func(
|
| 167 |
+
q,
|
| 168 |
+
k,
|
| 169 |
+
v,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
half_dtypes = (torch.float16, torch.bfloat16)
|
| 173 |
+
assert dtype in half_dtypes
|
| 174 |
+
assert q.device.type == "cuda" and q.size(-1) <= 256
|
| 175 |
+
|
| 176 |
+
# params
|
| 177 |
+
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
|
| 178 |
+
|
| 179 |
+
def half(x):
|
| 180 |
+
return x if x.dtype in half_dtypes else x.to(dtype)
|
| 181 |
+
|
| 182 |
+
# preprocess query
|
| 183 |
+
if q_lens is None:
|
| 184 |
+
q = half(q.flatten(0, 1))
|
| 185 |
+
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(
|
| 186 |
+
device=q.device, non_blocking=True
|
| 187 |
+
)
|
| 188 |
+
else:
|
| 189 |
+
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
|
| 190 |
+
|
| 191 |
+
# preprocess key, value
|
| 192 |
+
if k_lens is None:
|
| 193 |
+
k = half(k.flatten(0, 1))
|
| 194 |
+
v = half(v.flatten(0, 1))
|
| 195 |
+
k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(
|
| 196 |
+
device=k.device, non_blocking=True
|
| 197 |
+
)
|
| 198 |
+
else:
|
| 199 |
+
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
|
| 200 |
+
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
|
| 201 |
+
|
| 202 |
+
q = q.to(v.dtype)
|
| 203 |
+
k = k.to(v.dtype)
|
| 204 |
+
|
| 205 |
+
if q_scale is not None:
|
| 206 |
+
q = q * q_scale
|
| 207 |
+
|
| 208 |
+
if version is not None and version == 3 and not flash_attn_3_available:
|
| 209 |
+
warnings.warn(
|
| 210 |
+
"Flash attention 3 is not available, use flash attention 2 instead."
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
# apply attention
|
| 214 |
+
if (version is None or version == 3) and flash_attn_3_available:
|
| 215 |
+
# Note: dropout_p, window_size are not supported in FA3 now.
|
| 216 |
+
x = _flash_attn_interface.flash_attn_varlen_func(
|
| 217 |
+
q=q,
|
| 218 |
+
k=k,
|
| 219 |
+
v=v,
|
| 220 |
+
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens])
|
| 221 |
+
.cumsum(0, dtype=torch.int32)
|
| 222 |
+
.to(q.device, non_blocking=True),
|
| 223 |
+
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens])
|
| 224 |
+
.cumsum(0, dtype=torch.int32)
|
| 225 |
+
.to(q.device, non_blocking=True),
|
| 226 |
+
max_seqlen_q=lq,
|
| 227 |
+
max_seqlen_k=lk,
|
| 228 |
+
softmax_scale=softmax_scale,
|
| 229 |
+
causal=causal,
|
| 230 |
+
deterministic=deterministic,
|
| 231 |
+
).unflatten(0, (b, lq))
|
| 232 |
+
else:
|
| 233 |
+
assert flash_attn_2_available
|
| 234 |
+
x = _flash_attn.flash_attn_varlen_func(
|
| 235 |
+
q=q,
|
| 236 |
+
k=k,
|
| 237 |
+
v=v,
|
| 238 |
+
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens])
|
| 239 |
+
.cumsum(0, dtype=torch.int32)
|
| 240 |
+
.to(q.device, non_blocking=True),
|
| 241 |
+
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens])
|
| 242 |
+
.cumsum(0, dtype=torch.int32)
|
| 243 |
+
.to(q.device, non_blocking=True),
|
| 244 |
+
max_seqlen_q=lq,
|
| 245 |
+
max_seqlen_k=lk,
|
| 246 |
+
dropout_p=dropout_p,
|
| 247 |
+
softmax_scale=softmax_scale,
|
| 248 |
+
causal=causal,
|
| 249 |
+
window_size=window_size,
|
| 250 |
+
deterministic=deterministic,
|
| 251 |
+
).unflatten(0, (b, lq))
|
| 252 |
+
|
| 253 |
+
# output
|
| 254 |
+
return x.type(out_dtype)
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def attention(
|
| 258 |
+
q: torch.Tensor,
|
| 259 |
+
k: torch.Tensor,
|
| 260 |
+
v: torch.Tensor,
|
| 261 |
+
q_lens=None,
|
| 262 |
+
k_lens=None,
|
| 263 |
+
dropout_p=0.0,
|
| 264 |
+
softmax_scale=None,
|
| 265 |
+
q_scale=None,
|
| 266 |
+
causal=False,
|
| 267 |
+
window_size=(-1, -1),
|
| 268 |
+
deterministic=False,
|
| 269 |
+
dtype=torch.bfloat16,
|
| 270 |
+
fa_version=None,
|
| 271 |
+
# og_dtype=torch.bfloat16,
|
| 272 |
+
):
|
| 273 |
+
# Initialize attention modules
|
| 274 |
+
sageattn_available = _init_sageattention()
|
| 275 |
+
flash_attn_2_available = _init_flash_attention_2()
|
| 276 |
+
flash_attn_3_available = _init_flash_attention_3()
|
| 277 |
+
|
| 278 |
+
if sageattn_available:
|
| 279 |
+
# print("Using sageattention")
|
| 280 |
+
attn_mask = None
|
| 281 |
+
|
| 282 |
+
og_dtype = q.dtype
|
| 283 |
+
q = q.transpose(1, 2).to(dtype)
|
| 284 |
+
k = k.transpose(1, 2).to(dtype)
|
| 285 |
+
v = v.transpose(1, 2).to(dtype)
|
| 286 |
+
|
| 287 |
+
out = _sageattn_func(
|
| 288 |
+
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
out = out.transpose(1, 2).contiguous().to(og_dtype)
|
| 292 |
+
return out
|
| 293 |
+
|
| 294 |
+
elif flash_attn_2_available or flash_attn_3_available:
|
| 295 |
+
return flash_attention(
|
| 296 |
+
q=q,
|
| 297 |
+
k=k,
|
| 298 |
+
v=v,
|
| 299 |
+
q_lens=q_lens,
|
| 300 |
+
k_lens=k_lens,
|
| 301 |
+
dropout_p=dropout_p,
|
| 302 |
+
softmax_scale=softmax_scale,
|
| 303 |
+
q_scale=q_scale,
|
| 304 |
+
causal=causal,
|
| 305 |
+
window_size=window_size,
|
| 306 |
+
deterministic=deterministic,
|
| 307 |
+
dtype=dtype,
|
| 308 |
+
version=fa_version,
|
| 309 |
+
)
|
| 310 |
+
else:
|
| 311 |
+
if q_lens is not None or k_lens is not None:
|
| 312 |
+
warnings.warn(
|
| 313 |
+
"Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance."
|
| 314 |
+
)
|
| 315 |
+
attn_mask = None
|
| 316 |
+
|
| 317 |
+
q = q.transpose(1, 2).to(dtype)
|
| 318 |
+
k = k.transpose(1, 2).to(dtype)
|
| 319 |
+
v = v.transpose(1, 2).to(dtype)
|
| 320 |
+
|
| 321 |
+
out = torch.nn.functional.scaled_dot_product_attention(
|
| 322 |
+
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
out = out.transpose(1, 2).contiguous()
|
| 326 |
+
return out
|
transformer/causal_model.py
ADDED
|
@@ -0,0 +1,1402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
from .attention import attention
|
| 5 |
+
from .model import (
|
| 6 |
+
WanRMSNorm,
|
| 7 |
+
rope_apply,
|
| 8 |
+
WanLayerNorm,
|
| 9 |
+
WAN_CROSSATTENTION_CLASSES,
|
| 10 |
+
rope_params,
|
| 11 |
+
MLPProj,
|
| 12 |
+
sinusoidal_embedding_1d,
|
| 13 |
+
)
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
from torch.nn.attention.flex_attention import create_block_mask, flex_attention
|
| 17 |
+
from torch.nn.attention.flex_attention import BlockMask
|
| 18 |
+
|
| 19 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 20 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 21 |
+
|
| 22 |
+
flex_attention = torch.compile(
|
| 23 |
+
flex_attention, dynamic=False, mode="max-autotune-no-cudagraphs"
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def rope_params_riflex(max_seq_len, dim, theta=10000, k=0, L_test=None):
|
| 28 |
+
assert dim % 2 == 0
|
| 29 |
+
omega = 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim))
|
| 30 |
+
if k is not None:
|
| 31 |
+
print("Doing riflex w/ ltest", L_test)
|
| 32 |
+
omega[k - 1] = 0.9 * 2 * torch.pi / L_test
|
| 33 |
+
freqs = torch.outer(torch.arange(max_seq_len), omega)
|
| 34 |
+
|
| 35 |
+
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
| 36 |
+
return freqs
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@functools.lru_cache(maxsize=32)
|
| 40 |
+
def get_sdpa_mask(
|
| 41 |
+
device: str,
|
| 42 |
+
num_frames: int = 21,
|
| 43 |
+
frame_seqlen: int = 1560,
|
| 44 |
+
num_frame_per_block: int = 1,
|
| 45 |
+
local_attn_size: int = -1,
|
| 46 |
+
dtype: torch.dtype = torch.bool,
|
| 47 |
+
):
|
| 48 |
+
"""
|
| 49 |
+
Create an attention mask tensor for torch.nn.functional.scaled_dot_product_attention
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
device: Device to create the mask on
|
| 53 |
+
num_frames: Number of frames
|
| 54 |
+
frame_seqlen: Sequence length per frame
|
| 55 |
+
num_frame_per_block: Number of frames per block
|
| 56 |
+
local_attn_size: Local attention window size (-1 for global)
|
| 57 |
+
dtype: Data type for the mask (torch.bool for masking, torch.float for additive)
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
torch.Tensor: Attention mask of shape (seq_len, seq_len)
|
| 61 |
+
- True/1.0 for allowed attention
|
| 62 |
+
- False/-inf for masked attention
|
| 63 |
+
"""
|
| 64 |
+
print("Generating SDPA attention mask")
|
| 65 |
+
total_length = num_frames * frame_seqlen
|
| 66 |
+
|
| 67 |
+
# Right padding to get to a multiple of 128
|
| 68 |
+
padded_length = math.ceil(total_length / 128) * 128 - total_length
|
| 69 |
+
full_length = total_length + padded_length
|
| 70 |
+
|
| 71 |
+
# Create the ends array (same logic as original)
|
| 72 |
+
ends = torch.zeros(full_length, device=device, dtype=torch.long)
|
| 73 |
+
|
| 74 |
+
frame_indices = torch.arange(
|
| 75 |
+
start=0,
|
| 76 |
+
end=total_length,
|
| 77 |
+
step=frame_seqlen * num_frame_per_block,
|
| 78 |
+
device=device,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
for tmp in frame_indices:
|
| 82 |
+
end_idx = min(tmp + frame_seqlen * num_frame_per_block, full_length)
|
| 83 |
+
ends[tmp:end_idx] = end_idx
|
| 84 |
+
|
| 85 |
+
# Create q_idx and kv_idx coordinate matrices
|
| 86 |
+
q_indices = torch.arange(full_length, device=device).unsqueeze(
|
| 87 |
+
1
|
| 88 |
+
) # Shape: (seq_len, 1)
|
| 89 |
+
kv_indices = torch.arange(full_length, device=device).unsqueeze(
|
| 90 |
+
0
|
| 91 |
+
) # Shape: (1, seq_len)
|
| 92 |
+
|
| 93 |
+
# Apply the attention logic
|
| 94 |
+
if local_attn_size == -1:
|
| 95 |
+
# Global attention within blocks + diagonal
|
| 96 |
+
mask = (kv_indices < ends[q_indices]) | (q_indices == kv_indices)
|
| 97 |
+
else:
|
| 98 |
+
# Local attention within blocks + diagonal
|
| 99 |
+
local_window_start = ends[q_indices] - local_attn_size * frame_seqlen
|
| 100 |
+
mask = ((kv_indices < ends[q_indices]) & (kv_indices >= local_window_start)) | (
|
| 101 |
+
q_indices == kv_indices
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
if dtype == torch.bool:
|
| 105 |
+
return mask
|
| 106 |
+
elif dtype == torch.float32 or dtype == torch.float16:
|
| 107 |
+
# Convert to additive mask (0.0 for attend, -inf for mask)
|
| 108 |
+
return mask.float() * 0.0 + (~mask).float() * float("-inf")
|
| 109 |
+
else:
|
| 110 |
+
raise ValueError(f"Unsupported dtype: {dtype}")
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
@functools.lru_cache(maxsize=32)
|
| 114 |
+
def get_block_mask(
|
| 115 |
+
device: str,
|
| 116 |
+
num_frames: int = 21,
|
| 117 |
+
frame_seqlen: int = 1560,
|
| 118 |
+
num_frame_per_block=3,
|
| 119 |
+
local_attn_size=-1,
|
| 120 |
+
):
|
| 121 |
+
print("Generating block mask")
|
| 122 |
+
total_length = num_frames * frame_seqlen
|
| 123 |
+
|
| 124 |
+
# we do right padding to get to a multiple of 128
|
| 125 |
+
padded_length = math.ceil(total_length / 128) * 128 - total_length
|
| 126 |
+
|
| 127 |
+
ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
|
| 128 |
+
|
| 129 |
+
# Block-wise causal mask will attend to all elements that are before the end of the current chunk
|
| 130 |
+
frame_indices = torch.arange(
|
| 131 |
+
start=0,
|
| 132 |
+
end=total_length,
|
| 133 |
+
step=frame_seqlen * num_frame_per_block,
|
| 134 |
+
device=device,
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
for tmp in frame_indices:
|
| 138 |
+
ends[tmp : tmp + frame_seqlen * num_frame_per_block] = (
|
| 139 |
+
tmp + frame_seqlen * num_frame_per_block
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
def attention_mask(b, h, q_idx, kv_idx):
|
| 143 |
+
if local_attn_size == -1:
|
| 144 |
+
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx)
|
| 145 |
+
else:
|
| 146 |
+
return (
|
| 147 |
+
(kv_idx < ends[q_idx])
|
| 148 |
+
& (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))
|
| 149 |
+
) | (q_idx == kv_idx)
|
| 150 |
+
|
| 151 |
+
block_mask = create_block_mask(
|
| 152 |
+
attention_mask,
|
| 153 |
+
B=None,
|
| 154 |
+
H=None,
|
| 155 |
+
Q_LEN=total_length + padded_length,
|
| 156 |
+
KV_LEN=total_length + padded_length,
|
| 157 |
+
_compile=False,
|
| 158 |
+
device=device,
|
| 159 |
+
)
|
| 160 |
+
return block_mask
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def causal_rope_apply(x, grid_sizes, freqs, start_frame=0):
|
| 164 |
+
n, c = x.size(2), x.size(3) // 2
|
| 165 |
+
|
| 166 |
+
# split freqs
|
| 167 |
+
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
| 168 |
+
|
| 169 |
+
# loop over samples
|
| 170 |
+
output = []
|
| 171 |
+
|
| 172 |
+
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
| 173 |
+
seq_len = f * h * w
|
| 174 |
+
|
| 175 |
+
# precompute multipliers
|
| 176 |
+
x_i = torch.view_as_complex(
|
| 177 |
+
x[i, :seq_len].to(torch.float64).reshape(seq_len, n, -1, 2)
|
| 178 |
+
)
|
| 179 |
+
freqs_i = torch.cat(
|
| 180 |
+
[
|
| 181 |
+
freqs[0][start_frame : start_frame + f]
|
| 182 |
+
.view(f, 1, 1, -1)
|
| 183 |
+
.expand(f, h, w, -1),
|
| 184 |
+
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
| 185 |
+
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
|
| 186 |
+
],
|
| 187 |
+
dim=-1,
|
| 188 |
+
).reshape(seq_len, 1, -1)
|
| 189 |
+
|
| 190 |
+
# apply rotary embedding
|
| 191 |
+
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
|
| 192 |
+
x_i = torch.cat([x_i, x[i, seq_len:]])
|
| 193 |
+
|
| 194 |
+
# append to collection
|
| 195 |
+
output.append(x_i)
|
| 196 |
+
return torch.stack(output).type_as(x)
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
class CausalWanSelfAttention(nn.Module):
|
| 200 |
+
def __init__(
|
| 201 |
+
self, dim, num_heads, local_attn_size=-1, sink_size=0, qk_norm=True, eps=1e-6
|
| 202 |
+
):
|
| 203 |
+
assert dim % num_heads == 0
|
| 204 |
+
super().__init__()
|
| 205 |
+
self.dim = dim
|
| 206 |
+
self.num_heads = num_heads
|
| 207 |
+
self.head_dim = dim // num_heads
|
| 208 |
+
self.local_attn_size = local_attn_size
|
| 209 |
+
self.sink_size = sink_size
|
| 210 |
+
self.qk_norm = qk_norm
|
| 211 |
+
self.eps = eps
|
| 212 |
+
self.max_attention_size = (
|
| 213 |
+
32760 if local_attn_size == -1 else local_attn_size * 1560
|
| 214 |
+
)
|
| 215 |
+
self.fused_projections = False
|
| 216 |
+
|
| 217 |
+
# layers
|
| 218 |
+
self.q = nn.Linear(dim, dim)
|
| 219 |
+
self.k = nn.Linear(dim, dim)
|
| 220 |
+
self.v = nn.Linear(dim, dim)
|
| 221 |
+
self.o = nn.Linear(dim, dim)
|
| 222 |
+
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
| 223 |
+
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
| 224 |
+
|
| 225 |
+
@torch.no_grad()
|
| 226 |
+
def fuse_projections(self):
|
| 227 |
+
# if not self.is_cross_attention:
|
| 228 |
+
if self.fused_projections:
|
| 229 |
+
return
|
| 230 |
+
concatenated_weights = torch.cat(
|
| 231 |
+
[self.q.weight.data, self.k.weight.data, self.v.weight.data]
|
| 232 |
+
)
|
| 233 |
+
concatenated_bias = torch.cat(
|
| 234 |
+
[self.q.bias.data, self.k.bias.data, self.v.bias.data]
|
| 235 |
+
)
|
| 236 |
+
out_features, in_features = concatenated_weights.shape
|
| 237 |
+
with torch.device("meta"):
|
| 238 |
+
self.to_qkv = torch.nn.Linear(in_features, out_features, bias=True)
|
| 239 |
+
self.to_qkv.load_state_dict(
|
| 240 |
+
{"weight": concatenated_weights, "bias": concatenated_bias},
|
| 241 |
+
strict=True,
|
| 242 |
+
assign=True,
|
| 243 |
+
)
|
| 244 |
+
self.fused_projections = True
|
| 245 |
+
|
| 246 |
+
def forward(
|
| 247 |
+
self,
|
| 248 |
+
x,
|
| 249 |
+
seq_lens,
|
| 250 |
+
grid_sizes,
|
| 251 |
+
freqs,
|
| 252 |
+
block_mask,
|
| 253 |
+
kv_cache=None,
|
| 254 |
+
current_start=0,
|
| 255 |
+
cache_start=None,
|
| 256 |
+
):
|
| 257 |
+
r"""
|
| 258 |
+
Args:
|
| 259 |
+
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
| 260 |
+
seq_lens(Tensor): Shape [B]
|
| 261 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
| 262 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
| 263 |
+
block_mask (BlockMask)
|
| 264 |
+
"""
|
| 265 |
+
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
| 266 |
+
if cache_start is None:
|
| 267 |
+
cache_start = current_start
|
| 268 |
+
|
| 269 |
+
# query, key, value function
|
| 270 |
+
# @torch.compile(dynamic=True, mode="max-autotune-no-cudagraphs")
|
| 271 |
+
def qkv_fn(x):
|
| 272 |
+
if self.fused_projections:
|
| 273 |
+
# print("Using fused projections")
|
| 274 |
+
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
|
| 275 |
+
q = self.norm_q(q).view(b, s, n, d)
|
| 276 |
+
k = self.norm_k(k).view(b, s, n, d)
|
| 277 |
+
v = v.view(b, s, n, d)
|
| 278 |
+
else:
|
| 279 |
+
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
| 280 |
+
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
| 281 |
+
v = self.v(x).view(b, s, n, d)
|
| 282 |
+
return q, k, v
|
| 283 |
+
|
| 284 |
+
q, k, v = qkv_fn(x)
|
| 285 |
+
|
| 286 |
+
if kv_cache is None or block_mask is not None:
|
| 287 |
+
# if it is teacher forcing training?
|
| 288 |
+
# is_tf = (s == seq_lens[0].item() * 2)
|
| 289 |
+
is_tf = False
|
| 290 |
+
if is_tf:
|
| 291 |
+
print("Teacher forcing training")
|
| 292 |
+
q_chunk = torch.chunk(q, 2, dim=1)
|
| 293 |
+
k_chunk = torch.chunk(k, 2, dim=1)
|
| 294 |
+
roped_query = []
|
| 295 |
+
roped_key = []
|
| 296 |
+
# rope should be same for clean and noisy parts
|
| 297 |
+
for ii in range(2):
|
| 298 |
+
rq = rope_apply(q_chunk[ii], grid_sizes, freqs).type_as(v)
|
| 299 |
+
rk = rope_apply(k_chunk[ii], grid_sizes, freqs).type_as(v)
|
| 300 |
+
roped_query.append(rq)
|
| 301 |
+
roped_key.append(rk)
|
| 302 |
+
|
| 303 |
+
roped_query = torch.cat(roped_query, dim=1)
|
| 304 |
+
roped_key = torch.cat(roped_key, dim=1)
|
| 305 |
+
|
| 306 |
+
padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1]
|
| 307 |
+
padded_roped_query = torch.cat(
|
| 308 |
+
[
|
| 309 |
+
roped_query,
|
| 310 |
+
torch.zeros(
|
| 311 |
+
[q.shape[0], padded_length, q.shape[2], q.shape[3]],
|
| 312 |
+
device=q.device,
|
| 313 |
+
dtype=v.dtype,
|
| 314 |
+
),
|
| 315 |
+
],
|
| 316 |
+
dim=1,
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
padded_roped_key = torch.cat(
|
| 320 |
+
[
|
| 321 |
+
roped_key,
|
| 322 |
+
torch.zeros(
|
| 323 |
+
[k.shape[0], padded_length, k.shape[2], k.shape[3]],
|
| 324 |
+
device=k.device,
|
| 325 |
+
dtype=v.dtype,
|
| 326 |
+
),
|
| 327 |
+
],
|
| 328 |
+
dim=1,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
padded_v = torch.cat(
|
| 332 |
+
[
|
| 333 |
+
v,
|
| 334 |
+
torch.zeros(
|
| 335 |
+
[v.shape[0], padded_length, v.shape[2], v.shape[3]],
|
| 336 |
+
device=v.device,
|
| 337 |
+
dtype=v.dtype,
|
| 338 |
+
),
|
| 339 |
+
],
|
| 340 |
+
dim=1,
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
x = flex_attention(
|
| 344 |
+
query=padded_roped_query.transpose(2, 1),
|
| 345 |
+
key=padded_roped_key.transpose(2, 1),
|
| 346 |
+
value=padded_v.transpose(2, 1),
|
| 347 |
+
block_mask=block_mask,
|
| 348 |
+
)[:, :, :-padded_length].transpose(2, 1)
|
| 349 |
+
|
| 350 |
+
else:
|
| 351 |
+
roped_query = rope_apply(q, grid_sizes, freqs).type_as(v)
|
| 352 |
+
roped_key = rope_apply(k, grid_sizes, freqs).type_as(v)
|
| 353 |
+
local_end_index = roped_key.shape[1]
|
| 354 |
+
kv_cache["k"][:, :local_end_index] = roped_key
|
| 355 |
+
kv_cache["v"][:, :local_end_index] = v
|
| 356 |
+
|
| 357 |
+
kv_cache["global_end_index"] = local_end_index
|
| 358 |
+
kv_cache["local_end_index"] = local_end_index
|
| 359 |
+
|
| 360 |
+
padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1]
|
| 361 |
+
padded_roped_query = torch.cat(
|
| 362 |
+
[
|
| 363 |
+
roped_query,
|
| 364 |
+
torch.zeros(
|
| 365 |
+
[q.shape[0], padded_length, q.shape[2], q.shape[3]],
|
| 366 |
+
device=q.device,
|
| 367 |
+
dtype=v.dtype,
|
| 368 |
+
),
|
| 369 |
+
],
|
| 370 |
+
dim=1,
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
padded_roped_key = torch.cat(
|
| 374 |
+
[
|
| 375 |
+
roped_key,
|
| 376 |
+
torch.zeros(
|
| 377 |
+
[k.shape[0], padded_length, k.shape[2], k.shape[3]],
|
| 378 |
+
device=k.device,
|
| 379 |
+
dtype=v.dtype,
|
| 380 |
+
),
|
| 381 |
+
],
|
| 382 |
+
dim=1,
|
| 383 |
+
)
|
| 384 |
+
# print("shape of padded_roped_query", padded_roped_query.shape)
|
| 385 |
+
# print("shape of padded_roped_key", padded_roped_key.shape)
|
| 386 |
+
|
| 387 |
+
padded_v = torch.cat(
|
| 388 |
+
[
|
| 389 |
+
v,
|
| 390 |
+
torch.zeros(
|
| 391 |
+
[v.shape[0], padded_length, v.shape[2], v.shape[3]],
|
| 392 |
+
device=v.device,
|
| 393 |
+
dtype=v.dtype,
|
| 394 |
+
),
|
| 395 |
+
],
|
| 396 |
+
dim=1,
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
x = flex_attention(
|
| 400 |
+
query=padded_roped_query.transpose(2, 1).contiguous(),
|
| 401 |
+
key=padded_roped_key.transpose(2, 1).contiguous(),
|
| 402 |
+
value=padded_v.transpose(2, 1).contiguous(),
|
| 403 |
+
block_mask=block_mask,
|
| 404 |
+
kernel_options={
|
| 405 |
+
"BLOCKS_ARE_CONTIGUOUS": True,
|
| 406 |
+
},
|
| 407 |
+
)[:, :, :-padded_length].transpose(2, 1)
|
| 408 |
+
else:
|
| 409 |
+
# frame_seqlen = math.prod(grid_sizes[0][1:]).item() # torch compile doesn't like this
|
| 410 |
+
frame_seqlen = 1560
|
| 411 |
+
current_start_frame = current_start // frame_seqlen
|
| 412 |
+
roped_query = causal_rope_apply(
|
| 413 |
+
q, grid_sizes, freqs, start_frame=current_start_frame
|
| 414 |
+
).type_as(v)
|
| 415 |
+
roped_key = causal_rope_apply(
|
| 416 |
+
k, grid_sizes, freqs, start_frame=current_start_frame
|
| 417 |
+
).type_as(v)
|
| 418 |
+
|
| 419 |
+
current_end = current_start + roped_query.shape[1]
|
| 420 |
+
sink_tokens = self.sink_size * frame_seqlen
|
| 421 |
+
# If we are using local attention and the current KV cache size is larger than the local attention size, we need to truncate the KV cache
|
| 422 |
+
kv_cache_size = kv_cache["k"].shape[1]
|
| 423 |
+
num_new_tokens = roped_query.shape[1]
|
| 424 |
+
if (
|
| 425 |
+
self.local_attn_size != -1
|
| 426 |
+
and (current_end > kv_cache["global_end_index"])
|
| 427 |
+
and (num_new_tokens + kv_cache["local_end_index"] > kv_cache_size)
|
| 428 |
+
):
|
| 429 |
+
# Calculate the number of new tokens added in this step
|
| 430 |
+
# Shift existing cache content left to discard oldest tokens
|
| 431 |
+
# Clone the source slice to avoid overlapping memory error
|
| 432 |
+
num_evicted_tokens = (
|
| 433 |
+
num_new_tokens + kv_cache["local_end_index"] - kv_cache_size
|
| 434 |
+
)
|
| 435 |
+
num_rolled_tokens = (
|
| 436 |
+
kv_cache["local_end_index"] - num_evicted_tokens - sink_tokens
|
| 437 |
+
)
|
| 438 |
+
kv_cache["k"][:, sink_tokens : sink_tokens + num_rolled_tokens] = (
|
| 439 |
+
kv_cache["k"][
|
| 440 |
+
:,
|
| 441 |
+
sink_tokens + num_evicted_tokens : sink_tokens
|
| 442 |
+
+ num_evicted_tokens
|
| 443 |
+
+ num_rolled_tokens,
|
| 444 |
+
].clone()
|
| 445 |
+
)
|
| 446 |
+
kv_cache["v"][:, sink_tokens : sink_tokens + num_rolled_tokens] = (
|
| 447 |
+
kv_cache["v"][
|
| 448 |
+
:,
|
| 449 |
+
sink_tokens + num_evicted_tokens : sink_tokens
|
| 450 |
+
+ num_evicted_tokens
|
| 451 |
+
+ num_rolled_tokens,
|
| 452 |
+
].clone()
|
| 453 |
+
)
|
| 454 |
+
# Insert the new keys/values at the end
|
| 455 |
+
local_end_index = (
|
| 456 |
+
kv_cache["local_end_index"]
|
| 457 |
+
+ current_end
|
| 458 |
+
- kv_cache["global_end_index"]
|
| 459 |
+
- num_evicted_tokens
|
| 460 |
+
)
|
| 461 |
+
local_start_index = local_end_index - num_new_tokens
|
| 462 |
+
kv_cache["k"][:, local_start_index:local_end_index] = roped_key
|
| 463 |
+
kv_cache["v"][:, local_start_index:local_end_index] = v
|
| 464 |
+
else:
|
| 465 |
+
# Assign new keys/values directly up to current_end
|
| 466 |
+
local_end_index = (
|
| 467 |
+
kv_cache["local_end_index"]
|
| 468 |
+
+ current_end
|
| 469 |
+
- kv_cache["global_end_index"]
|
| 470 |
+
)
|
| 471 |
+
local_start_index = local_end_index - num_new_tokens
|
| 472 |
+
kv_cache["k"][:, local_start_index:local_end_index] = roped_key
|
| 473 |
+
kv_cache["v"][:, local_start_index:local_end_index] = v
|
| 474 |
+
|
| 475 |
+
x = attention(
|
| 476 |
+
roped_query,
|
| 477 |
+
kv_cache["k"][
|
| 478 |
+
:,
|
| 479 |
+
max(0, local_end_index - self.max_attention_size) : local_end_index,
|
| 480 |
+
],
|
| 481 |
+
kv_cache["v"][
|
| 482 |
+
:,
|
| 483 |
+
max(0, local_end_index - self.max_attention_size) : local_end_index,
|
| 484 |
+
],
|
| 485 |
+
)
|
| 486 |
+
kv_cache["global_end_index"] = current_end
|
| 487 |
+
kv_cache["local_end_index"] = local_end_index
|
| 488 |
+
|
| 489 |
+
# output
|
| 490 |
+
x = x.flatten(2)
|
| 491 |
+
x = self.o(x)
|
| 492 |
+
return x
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
class CausalWanAttentionBlock(nn.Module):
|
| 496 |
+
def __init__(
|
| 497 |
+
self,
|
| 498 |
+
cross_attn_type,
|
| 499 |
+
dim,
|
| 500 |
+
ffn_dim,
|
| 501 |
+
num_heads,
|
| 502 |
+
local_attn_size=-1,
|
| 503 |
+
sink_size=0,
|
| 504 |
+
qk_norm=True,
|
| 505 |
+
cross_attn_norm=False,
|
| 506 |
+
eps=1e-6,
|
| 507 |
+
):
|
| 508 |
+
super().__init__()
|
| 509 |
+
self.dim = dim
|
| 510 |
+
self.ffn_dim = ffn_dim
|
| 511 |
+
self.num_heads = num_heads
|
| 512 |
+
self.local_attn_size = local_attn_size
|
| 513 |
+
self.qk_norm = qk_norm
|
| 514 |
+
self.cross_attn_norm = cross_attn_norm
|
| 515 |
+
self.eps = eps
|
| 516 |
+
|
| 517 |
+
# layers
|
| 518 |
+
self.norm1 = WanLayerNorm(dim, eps)
|
| 519 |
+
self.self_attn = CausalWanSelfAttention(
|
| 520 |
+
dim, num_heads, local_attn_size, sink_size, qk_norm, eps
|
| 521 |
+
)
|
| 522 |
+
self.norm3 = (
|
| 523 |
+
WanLayerNorm(dim, eps, elementwise_affine=True)
|
| 524 |
+
if cross_attn_norm
|
| 525 |
+
else nn.Identity()
|
| 526 |
+
)
|
| 527 |
+
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](
|
| 528 |
+
dim, num_heads, (-1, -1), qk_norm, eps
|
| 529 |
+
)
|
| 530 |
+
self.norm2 = WanLayerNorm(dim, eps)
|
| 531 |
+
self.ffn = nn.Sequential(
|
| 532 |
+
nn.Linear(dim, ffn_dim),
|
| 533 |
+
nn.GELU(approximate="tanh"),
|
| 534 |
+
nn.Linear(ffn_dim, dim),
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
# modulation
|
| 538 |
+
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
| 539 |
+
|
| 540 |
+
def forward(
|
| 541 |
+
self,
|
| 542 |
+
x,
|
| 543 |
+
e,
|
| 544 |
+
seq_lens,
|
| 545 |
+
grid_sizes,
|
| 546 |
+
freqs,
|
| 547 |
+
context,
|
| 548 |
+
context_lens,
|
| 549 |
+
block_mask,
|
| 550 |
+
kv_cache=None,
|
| 551 |
+
crossattn_cache=None,
|
| 552 |
+
current_start=0,
|
| 553 |
+
cache_start=None,
|
| 554 |
+
):
|
| 555 |
+
r"""
|
| 556 |
+
Args:
|
| 557 |
+
x(Tensor): Shape [B, L, C]
|
| 558 |
+
e(Tensor): Shape [B, F, 6, C]
|
| 559 |
+
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
| 560 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
| 561 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
| 562 |
+
"""
|
| 563 |
+
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1]
|
| 564 |
+
# assert e.dtype == torch.float32
|
| 565 |
+
# with amp.autocast(dtype=torch.float32):
|
| 566 |
+
e = (self.modulation.unsqueeze(1) + e).chunk(6, dim=2)
|
| 567 |
+
# assert e[0].dtype == torch.float32
|
| 568 |
+
|
| 569 |
+
# self-attention
|
| 570 |
+
y = self.self_attn(
|
| 571 |
+
(
|
| 572 |
+
self.norm1(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen))
|
| 573 |
+
* (1 + e[1])
|
| 574 |
+
+ e[0]
|
| 575 |
+
).flatten(1, 2),
|
| 576 |
+
seq_lens,
|
| 577 |
+
grid_sizes,
|
| 578 |
+
freqs,
|
| 579 |
+
block_mask,
|
| 580 |
+
kv_cache,
|
| 581 |
+
current_start,
|
| 582 |
+
cache_start,
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
# with amp.autocast(dtype=torch.float32):
|
| 586 |
+
x = x + (y.unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * e[2]).flatten(
|
| 587 |
+
1, 2
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
# cross-attention & ffn function
|
| 591 |
+
def cross_attn_ffn(x, context, context_lens, e, crossattn_cache=None):
|
| 592 |
+
x = x + self.cross_attn(
|
| 593 |
+
self.norm3(x), context, context_lens, crossattn_cache=crossattn_cache
|
| 594 |
+
)
|
| 595 |
+
y = self.ffn(
|
| 596 |
+
(
|
| 597 |
+
self.norm2(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen))
|
| 598 |
+
* (1 + e[4])
|
| 599 |
+
+ e[3]
|
| 600 |
+
).flatten(1, 2)
|
| 601 |
+
)
|
| 602 |
+
# with amp.autocast(dtype=torch.float32):
|
| 603 |
+
x = x + (
|
| 604 |
+
y.unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * e[5]
|
| 605 |
+
).flatten(1, 2)
|
| 606 |
+
return x
|
| 607 |
+
|
| 608 |
+
x = cross_attn_ffn(x, context, context_lens, e, crossattn_cache)
|
| 609 |
+
return x
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
class CausalHead(nn.Module):
|
| 613 |
+
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
|
| 614 |
+
super().__init__()
|
| 615 |
+
self.dim = dim
|
| 616 |
+
self.out_dim = out_dim
|
| 617 |
+
self.patch_size = patch_size
|
| 618 |
+
self.eps = eps
|
| 619 |
+
|
| 620 |
+
# layers
|
| 621 |
+
out_dim = math.prod(patch_size) * out_dim
|
| 622 |
+
self.norm = WanLayerNorm(dim, eps)
|
| 623 |
+
self.head = nn.Linear(dim, out_dim)
|
| 624 |
+
|
| 625 |
+
# modulation
|
| 626 |
+
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
| 627 |
+
|
| 628 |
+
def forward(self, x, e):
|
| 629 |
+
r"""
|
| 630 |
+
Args:
|
| 631 |
+
x(Tensor): Shape [B, L1, C]
|
| 632 |
+
e(Tensor): Shape [B, F, 1, C]
|
| 633 |
+
"""
|
| 634 |
+
# assert e.dtype == torch.float32
|
| 635 |
+
# with amp.autocast(dtype=torch.float32):
|
| 636 |
+
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1]
|
| 637 |
+
e = (self.modulation.unsqueeze(1) + e).chunk(2, dim=2)
|
| 638 |
+
x = self.head(
|
| 639 |
+
self.norm(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1])
|
| 640 |
+
+ e[0]
|
| 641 |
+
)
|
| 642 |
+
return x
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
class CausalWanModel(ModelMixin, ConfigMixin):
|
| 646 |
+
r"""
|
| 647 |
+
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
| 648 |
+
"""
|
| 649 |
+
|
| 650 |
+
ignore_for_config = ["patch_size", "cross_attn_norm", "qk_norm", "text_dim"]
|
| 651 |
+
_no_split_modules = ["WanAttentionBlock"]
|
| 652 |
+
_supports_gradient_checkpointing = True
|
| 653 |
+
|
| 654 |
+
@register_to_config
|
| 655 |
+
def __init__(
|
| 656 |
+
self,
|
| 657 |
+
model_type="t2v",
|
| 658 |
+
patch_size=(1, 2, 2),
|
| 659 |
+
text_len=512,
|
| 660 |
+
in_dim=16,
|
| 661 |
+
dim=2048,
|
| 662 |
+
ffn_dim=8192,
|
| 663 |
+
freq_dim=256,
|
| 664 |
+
text_dim=4096,
|
| 665 |
+
out_dim=16,
|
| 666 |
+
num_heads=16,
|
| 667 |
+
num_layers=32,
|
| 668 |
+
local_attn_size=-1,
|
| 669 |
+
sink_size=0,
|
| 670 |
+
qk_norm=True,
|
| 671 |
+
cross_attn_norm=True,
|
| 672 |
+
eps=1e-6,
|
| 673 |
+
):
|
| 674 |
+
r"""
|
| 675 |
+
Initialize the diffusion model backbone.
|
| 676 |
+
|
| 677 |
+
Args:
|
| 678 |
+
model_type (`str`, *optional*, defaults to 't2v'):
|
| 679 |
+
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
|
| 680 |
+
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
|
| 681 |
+
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
|
| 682 |
+
text_len (`int`, *optional*, defaults to 512):
|
| 683 |
+
Fixed length for text embeddings
|
| 684 |
+
in_dim (`int`, *optional*, defaults to 16):
|
| 685 |
+
Input video channels (C_in)
|
| 686 |
+
dim (`int`, *optional*, defaults to 2048):
|
| 687 |
+
Hidden dimension of the transformer
|
| 688 |
+
ffn_dim (`int`, *optional*, defaults to 8192):
|
| 689 |
+
Intermediate dimension in feed-forward network
|
| 690 |
+
freq_dim (`int`, *optional*, defaults to 256):
|
| 691 |
+
Dimension for sinusoidal time embeddings
|
| 692 |
+
text_dim (`int`, *optional*, defaults to 4096):
|
| 693 |
+
Input dimension for text embeddings
|
| 694 |
+
out_dim (`int`, *optional*, defaults to 16):
|
| 695 |
+
Output video channels (C_out)
|
| 696 |
+
num_heads (`int`, *optional*, defaults to 16):
|
| 697 |
+
Number of attention heads
|
| 698 |
+
num_layers (`int`, *optional*, defaults to 32):
|
| 699 |
+
Number of transformer blocks
|
| 700 |
+
local_attn_size (`int`, *optional*, defaults to -1):
|
| 701 |
+
Window size for temporal local attention (-1 indicates global attention)
|
| 702 |
+
sink_size (`int`, *optional*, defaults to 0):
|
| 703 |
+
Size of the attention sink, we keep the first `sink_size` frames unchanged when rolling the KV cache
|
| 704 |
+
qk_norm (`bool`, *optional*, defaults to True):
|
| 705 |
+
Enable query/key normalization
|
| 706 |
+
cross_attn_norm (`bool`, *optional*, defaults to False):
|
| 707 |
+
Enable cross-attention normalization
|
| 708 |
+
eps (`float`, *optional*, defaults to 1e-6):
|
| 709 |
+
Epsilon value for normalization layers
|
| 710 |
+
"""
|
| 711 |
+
|
| 712 |
+
super().__init__()
|
| 713 |
+
|
| 714 |
+
assert model_type in ["t2v", "i2v"]
|
| 715 |
+
self.model_type = model_type
|
| 716 |
+
|
| 717 |
+
self.patch_size = patch_size
|
| 718 |
+
self.text_len = text_len
|
| 719 |
+
self.in_dim = in_dim
|
| 720 |
+
self.dim = dim
|
| 721 |
+
self.ffn_dim = ffn_dim
|
| 722 |
+
self.freq_dim = freq_dim
|
| 723 |
+
self.text_dim = text_dim
|
| 724 |
+
self.out_dim = out_dim
|
| 725 |
+
self.num_heads = num_heads
|
| 726 |
+
self.num_layers = num_layers
|
| 727 |
+
self.local_attn_size = local_attn_size
|
| 728 |
+
self.qk_norm = qk_norm
|
| 729 |
+
self.cross_attn_norm = cross_attn_norm
|
| 730 |
+
self.eps = eps
|
| 731 |
+
|
| 732 |
+
# embeddings
|
| 733 |
+
self.patch_embedding = nn.Conv3d(
|
| 734 |
+
in_dim, dim, kernel_size=patch_size, stride=patch_size
|
| 735 |
+
)
|
| 736 |
+
self.text_embedding = nn.Sequential(
|
| 737 |
+
nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim)
|
| 738 |
+
)
|
| 739 |
+
|
| 740 |
+
self.time_embedding = nn.Sequential(
|
| 741 |
+
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)
|
| 742 |
+
)
|
| 743 |
+
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
|
| 744 |
+
|
| 745 |
+
# blocks
|
| 746 |
+
cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn"
|
| 747 |
+
self.blocks = nn.ModuleList(
|
| 748 |
+
[
|
| 749 |
+
CausalWanAttentionBlock(
|
| 750 |
+
cross_attn_type,
|
| 751 |
+
dim,
|
| 752 |
+
ffn_dim,
|
| 753 |
+
num_heads,
|
| 754 |
+
local_attn_size,
|
| 755 |
+
sink_size,
|
| 756 |
+
qk_norm,
|
| 757 |
+
cross_attn_norm,
|
| 758 |
+
eps,
|
| 759 |
+
)
|
| 760 |
+
for _ in range(num_layers)
|
| 761 |
+
]
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
# head
|
| 765 |
+
self.head = CausalHead(dim, out_dim, patch_size, eps)
|
| 766 |
+
|
| 767 |
+
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
| 768 |
+
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
| 769 |
+
d = dim // num_heads
|
| 770 |
+
self.freqs = torch.cat(
|
| 771 |
+
[
|
| 772 |
+
rope_params(1024, d - 4 * (d // 6)),
|
| 773 |
+
# rope_params_riflex(1024, d - 4 * (d // 6), ),
|
| 774 |
+
rope_params(1024, 2 * (d // 6)),
|
| 775 |
+
rope_params(1024, 2 * (d // 6)),
|
| 776 |
+
],
|
| 777 |
+
dim=1,
|
| 778 |
+
)
|
| 779 |
+
|
| 780 |
+
if model_type == "i2v":
|
| 781 |
+
self.img_emb = MLPProj(1280, dim)
|
| 782 |
+
|
| 783 |
+
# initialize weights
|
| 784 |
+
self.init_weights()
|
| 785 |
+
|
| 786 |
+
self.gradient_checkpointing = False
|
| 787 |
+
|
| 788 |
+
self.block_mask = None
|
| 789 |
+
|
| 790 |
+
self.num_frame_per_block = 1
|
| 791 |
+
self.independent_first_frame = False
|
| 792 |
+
|
| 793 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 794 |
+
self.gradient_checkpointing = value
|
| 795 |
+
|
| 796 |
+
@staticmethod
|
| 797 |
+
def _prepare_blockwise_causal_attn_mask(
|
| 798 |
+
device,
|
| 799 |
+
num_frames: int = 21,
|
| 800 |
+
frame_seqlen: int = 1560,
|
| 801 |
+
num_frame_per_block=1,
|
| 802 |
+
local_attn_size=-1,
|
| 803 |
+
) -> BlockMask:
|
| 804 |
+
"""
|
| 805 |
+
we will divide the token sequence into the following format
|
| 806 |
+
[1 latent frame] [1 latent frame] ... [1 latent frame]
|
| 807 |
+
We use flexattention to construct the attention mask
|
| 808 |
+
"""
|
| 809 |
+
block_mask = get_block_mask(
|
| 810 |
+
str(device), num_frames, frame_seqlen, num_frame_per_block, local_attn_size
|
| 811 |
+
)
|
| 812 |
+
return block_mask
|
| 813 |
+
|
| 814 |
+
@staticmethod
|
| 815 |
+
def _prepare_teacher_forcing_mask(
|
| 816 |
+
device: torch.device | str,
|
| 817 |
+
num_frames: int = 21,
|
| 818 |
+
frame_seqlen: int = 1560,
|
| 819 |
+
num_frame_per_block=1,
|
| 820 |
+
) -> BlockMask:
|
| 821 |
+
"""
|
| 822 |
+
we will divide the token sequence into the following format
|
| 823 |
+
[1 latent frame] [1 latent frame] ... [1 latent frame]
|
| 824 |
+
We use flexattention to construct the attention mask
|
| 825 |
+
"""
|
| 826 |
+
# debug
|
| 827 |
+
DEBUG = False
|
| 828 |
+
if DEBUG:
|
| 829 |
+
num_frames = 9
|
| 830 |
+
frame_seqlen = 256
|
| 831 |
+
|
| 832 |
+
total_length = num_frames * frame_seqlen * 2
|
| 833 |
+
|
| 834 |
+
# we do right padding to get to a multiple of 128
|
| 835 |
+
padded_length = math.ceil(total_length / 128) * 128 - total_length
|
| 836 |
+
|
| 837 |
+
clean_ends = num_frames * frame_seqlen
|
| 838 |
+
# for clean context frames, we can construct their flex attention mask based on a [start, end] interval
|
| 839 |
+
context_ends = torch.zeros(
|
| 840 |
+
total_length + padded_length, device=device, dtype=torch.long
|
| 841 |
+
)
|
| 842 |
+
# for noisy frames, we need two intervals to construct the flex attention mask [context_start, context_end] [noisy_start, noisy_end]
|
| 843 |
+
noise_context_starts = torch.zeros(
|
| 844 |
+
total_length + padded_length, device=device, dtype=torch.long
|
| 845 |
+
)
|
| 846 |
+
noise_context_ends = torch.zeros(
|
| 847 |
+
total_length + padded_length, device=device, dtype=torch.long
|
| 848 |
+
)
|
| 849 |
+
noise_noise_starts = torch.zeros(
|
| 850 |
+
total_length + padded_length, device=device, dtype=torch.long
|
| 851 |
+
)
|
| 852 |
+
noise_noise_ends = torch.zeros(
|
| 853 |
+
total_length + padded_length, device=device, dtype=torch.long
|
| 854 |
+
)
|
| 855 |
+
|
| 856 |
+
# Block-wise causal mask will attend to all elements that are before the end of the current chunk
|
| 857 |
+
attention_block_size = frame_seqlen * num_frame_per_block
|
| 858 |
+
frame_indices = torch.arange(
|
| 859 |
+
start=0,
|
| 860 |
+
end=num_frames * frame_seqlen,
|
| 861 |
+
step=attention_block_size,
|
| 862 |
+
device=device,
|
| 863 |
+
dtype=torch.long,
|
| 864 |
+
)
|
| 865 |
+
|
| 866 |
+
# attention for clean context frames
|
| 867 |
+
for start in frame_indices:
|
| 868 |
+
context_ends[start : start + attention_block_size] = (
|
| 869 |
+
start + attention_block_size
|
| 870 |
+
)
|
| 871 |
+
|
| 872 |
+
noisy_image_start_list = torch.arange(
|
| 873 |
+
num_frames * frame_seqlen,
|
| 874 |
+
total_length,
|
| 875 |
+
step=attention_block_size,
|
| 876 |
+
device=device,
|
| 877 |
+
dtype=torch.long,
|
| 878 |
+
)
|
| 879 |
+
noisy_image_end_list = noisy_image_start_list + attention_block_size
|
| 880 |
+
|
| 881 |
+
# attention for noisy frames
|
| 882 |
+
for block_index, (start, end) in enumerate(
|
| 883 |
+
zip(noisy_image_start_list, noisy_image_end_list)
|
| 884 |
+
):
|
| 885 |
+
# attend to noisy tokens within the same block
|
| 886 |
+
noise_noise_starts[start:end] = start
|
| 887 |
+
noise_noise_ends[start:end] = end
|
| 888 |
+
# attend to context tokens in previous blocks
|
| 889 |
+
# noise_context_starts[start:end] = 0
|
| 890 |
+
noise_context_ends[start:end] = block_index * attention_block_size
|
| 891 |
+
|
| 892 |
+
def attention_mask(b, h, q_idx, kv_idx):
|
| 893 |
+
# first design the mask for clean frames
|
| 894 |
+
clean_mask = (q_idx < clean_ends) & (kv_idx < context_ends[q_idx])
|
| 895 |
+
# then design the mask for noisy frames
|
| 896 |
+
# noisy frames will attend to all clean preceeding clean frames + itself
|
| 897 |
+
C1 = (kv_idx < noise_noise_ends[q_idx]) & (
|
| 898 |
+
kv_idx >= noise_noise_starts[q_idx]
|
| 899 |
+
)
|
| 900 |
+
C2 = (kv_idx < noise_context_ends[q_idx]) & (
|
| 901 |
+
kv_idx >= noise_context_starts[q_idx]
|
| 902 |
+
)
|
| 903 |
+
noise_mask = (q_idx >= clean_ends) & (C1 | C2)
|
| 904 |
+
|
| 905 |
+
eye_mask = q_idx == kv_idx
|
| 906 |
+
return eye_mask | clean_mask | noise_mask
|
| 907 |
+
|
| 908 |
+
block_mask = create_block_mask(
|
| 909 |
+
attention_mask,
|
| 910 |
+
B=None,
|
| 911 |
+
H=None,
|
| 912 |
+
Q_LEN=total_length + padded_length,
|
| 913 |
+
KV_LEN=total_length + padded_length,
|
| 914 |
+
_compile=False,
|
| 915 |
+
device=device,
|
| 916 |
+
)
|
| 917 |
+
|
| 918 |
+
if DEBUG:
|
| 919 |
+
print(block_mask)
|
| 920 |
+
import imageio
|
| 921 |
+
import numpy as np
|
| 922 |
+
from torch.nn.attention.flex_attention import create_mask
|
| 923 |
+
|
| 924 |
+
mask = create_mask(
|
| 925 |
+
attention_mask,
|
| 926 |
+
B=None,
|
| 927 |
+
H=None,
|
| 928 |
+
Q_LEN=total_length + padded_length,
|
| 929 |
+
KV_LEN=total_length + padded_length,
|
| 930 |
+
device=device,
|
| 931 |
+
)
|
| 932 |
+
import cv2
|
| 933 |
+
|
| 934 |
+
mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024))
|
| 935 |
+
imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255.0 * mask))
|
| 936 |
+
|
| 937 |
+
return block_mask
|
| 938 |
+
|
| 939 |
+
@staticmethod
|
| 940 |
+
def _prepare_blockwise_causal_attn_mask_i2v(
|
| 941 |
+
device: torch.device | str,
|
| 942 |
+
num_frames: int = 21,
|
| 943 |
+
frame_seqlen: int = 1560,
|
| 944 |
+
num_frame_per_block=4,
|
| 945 |
+
local_attn_size=-1,
|
| 946 |
+
) -> BlockMask:
|
| 947 |
+
"""
|
| 948 |
+
we will divide the token sequence into the following format
|
| 949 |
+
[1 latent frame] [N latent frame] ... [N latent frame]
|
| 950 |
+
The first frame is separated out to support I2V generation
|
| 951 |
+
We use flexattention to construct the attention mask
|
| 952 |
+
"""
|
| 953 |
+
total_length = num_frames * frame_seqlen
|
| 954 |
+
|
| 955 |
+
# we do right padding to get to a multiple of 128
|
| 956 |
+
padded_length = math.ceil(total_length / 128) * 128 - total_length
|
| 957 |
+
|
| 958 |
+
ends = torch.zeros(
|
| 959 |
+
total_length + padded_length, device=device, dtype=torch.long
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
# special handling for the first frame
|
| 963 |
+
ends[:frame_seqlen] = frame_seqlen
|
| 964 |
+
|
| 965 |
+
# Block-wise causal mask will attend to all elements that are before the end of the current chunk
|
| 966 |
+
frame_indices = torch.arange(
|
| 967 |
+
start=frame_seqlen,
|
| 968 |
+
end=total_length,
|
| 969 |
+
step=frame_seqlen * num_frame_per_block,
|
| 970 |
+
device=device,
|
| 971 |
+
)
|
| 972 |
+
|
| 973 |
+
for idx, tmp in enumerate(frame_indices):
|
| 974 |
+
ends[tmp : tmp + frame_seqlen * num_frame_per_block] = (
|
| 975 |
+
tmp + frame_seqlen * num_frame_per_block
|
| 976 |
+
)
|
| 977 |
+
|
| 978 |
+
def attention_mask(b, h, q_idx, kv_idx):
|
| 979 |
+
if local_attn_size == -1:
|
| 980 |
+
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx)
|
| 981 |
+
else:
|
| 982 |
+
return (
|
| 983 |
+
(kv_idx < ends[q_idx])
|
| 984 |
+
& (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))
|
| 985 |
+
) | (q_idx == kv_idx)
|
| 986 |
+
|
| 987 |
+
block_mask = create_block_mask(
|
| 988 |
+
attention_mask,
|
| 989 |
+
B=None,
|
| 990 |
+
H=None,
|
| 991 |
+
Q_LEN=total_length + padded_length,
|
| 992 |
+
KV_LEN=total_length + padded_length,
|
| 993 |
+
_compile=False,
|
| 994 |
+
device=device,
|
| 995 |
+
)
|
| 996 |
+
|
| 997 |
+
# if not dist.is_initialized() or dist.get_rank() == 0:
|
| 998 |
+
# print(
|
| 999 |
+
# f" cache a block wise causal mask with block size of {num_frame_per_block} frames")
|
| 1000 |
+
# print(block_mask)
|
| 1001 |
+
|
| 1002 |
+
# import imageio
|
| 1003 |
+
# import numpy as np
|
| 1004 |
+
# from torch.nn.attention.flex_attention import create_mask
|
| 1005 |
+
|
| 1006 |
+
# mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length +
|
| 1007 |
+
# padded_length, KV_LEN=total_length + padded_length, device=device)
|
| 1008 |
+
# import cv2
|
| 1009 |
+
# mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024))
|
| 1010 |
+
# imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask))
|
| 1011 |
+
|
| 1012 |
+
return block_mask
|
| 1013 |
+
|
| 1014 |
+
def _forward_inference(
|
| 1015 |
+
self,
|
| 1016 |
+
x,
|
| 1017 |
+
t,
|
| 1018 |
+
context,
|
| 1019 |
+
seq_len,
|
| 1020 |
+
clip_fea=None,
|
| 1021 |
+
y=None,
|
| 1022 |
+
kv_cache: dict = None,
|
| 1023 |
+
crossattn_cache: dict = None,
|
| 1024 |
+
current_start: int = 0,
|
| 1025 |
+
cache_start: int = 0,
|
| 1026 |
+
):
|
| 1027 |
+
r"""
|
| 1028 |
+
Run the diffusion model with kv caching.
|
| 1029 |
+
See Algorithm 2 of CausVid paper https://arxiv.org/abs/2412.07772 for details.
|
| 1030 |
+
This function will be run for num_frame times.
|
| 1031 |
+
Process the latent frames one by one (1560 tokens each)
|
| 1032 |
+
|
| 1033 |
+
Args:
|
| 1034 |
+
x (List[Tensor]):
|
| 1035 |
+
List of input video tensors, each with shape [C_in, F, H, W]
|
| 1036 |
+
t (Tensor):
|
| 1037 |
+
Diffusion timesteps tensor of shape [B]
|
| 1038 |
+
context (List[Tensor]):
|
| 1039 |
+
List of text embeddings each with shape [L, C]
|
| 1040 |
+
seq_len (`int`):
|
| 1041 |
+
Maximum sequence length for positional encoding
|
| 1042 |
+
clip_fea (Tensor, *optional*):
|
| 1043 |
+
CLIP image features for image-to-video mode
|
| 1044 |
+
y (List[Tensor], *optional*):
|
| 1045 |
+
Conditional video inputs for image-to-video mode, same shape as x
|
| 1046 |
+
|
| 1047 |
+
Returns:
|
| 1048 |
+
List[Tensor]:
|
| 1049 |
+
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
| 1050 |
+
"""
|
| 1051 |
+
if self.model_type == "i2v":
|
| 1052 |
+
assert clip_fea is not None and y is not None
|
| 1053 |
+
# params
|
| 1054 |
+
device = self.patch_embedding.weight.device
|
| 1055 |
+
if self.freqs.device != device:
|
| 1056 |
+
self.freqs = self.freqs.to(device)
|
| 1057 |
+
|
| 1058 |
+
if y is not None:
|
| 1059 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
| 1060 |
+
|
| 1061 |
+
# embeddings
|
| 1062 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
| 1063 |
+
grid_sizes = torch.stack(
|
| 1064 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]
|
| 1065 |
+
)
|
| 1066 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
| 1067 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
| 1068 |
+
assert seq_lens.max() <= seq_len
|
| 1069 |
+
x = torch.cat(x)
|
| 1070 |
+
"""
|
| 1071 |
+
torch.cat([
|
| 1072 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
| 1073 |
+
dim=1) for u in x
|
| 1074 |
+
])
|
| 1075 |
+
"""
|
| 1076 |
+
|
| 1077 |
+
# time embeddings
|
| 1078 |
+
# with amp.autocast(dtype=torch.float32):
|
| 1079 |
+
e = self.time_embedding(
|
| 1080 |
+
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x)
|
| 1081 |
+
)
|
| 1082 |
+
e0 = (
|
| 1083 |
+
self.time_projection(e)
|
| 1084 |
+
.unflatten(1, (6, self.dim))
|
| 1085 |
+
.unflatten(dim=0, sizes=t.shape)
|
| 1086 |
+
)
|
| 1087 |
+
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
| 1088 |
+
|
| 1089 |
+
# context
|
| 1090 |
+
context_lens = None
|
| 1091 |
+
context = self.text_embedding(
|
| 1092 |
+
torch.stack(
|
| 1093 |
+
[
|
| 1094 |
+
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
| 1095 |
+
for u in context
|
| 1096 |
+
]
|
| 1097 |
+
)
|
| 1098 |
+
)
|
| 1099 |
+
|
| 1100 |
+
if clip_fea is not None:
|
| 1101 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
| 1102 |
+
context = torch.concat([context_clip, context], dim=1)
|
| 1103 |
+
|
| 1104 |
+
# arguments
|
| 1105 |
+
kwargs = dict(
|
| 1106 |
+
e=e0,
|
| 1107 |
+
seq_lens=seq_lens,
|
| 1108 |
+
grid_sizes=grid_sizes,
|
| 1109 |
+
freqs=self.freqs,
|
| 1110 |
+
context=context,
|
| 1111 |
+
context_lens=context_lens,
|
| 1112 |
+
block_mask=self.block_mask,
|
| 1113 |
+
)
|
| 1114 |
+
# print("Block mask in forward : ", self.block_mask)
|
| 1115 |
+
|
| 1116 |
+
def create_custom_forward(module):
|
| 1117 |
+
def custom_forward(*inputs, **kwargs):
|
| 1118 |
+
return module(*inputs, **kwargs)
|
| 1119 |
+
|
| 1120 |
+
return custom_forward
|
| 1121 |
+
|
| 1122 |
+
for block_index, block in enumerate(self.blocks):
|
| 1123 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 1124 |
+
kwargs.update(
|
| 1125 |
+
{
|
| 1126 |
+
"kv_cache": kv_cache[block_index],
|
| 1127 |
+
"current_start": current_start,
|
| 1128 |
+
"cache_start": cache_start,
|
| 1129 |
+
}
|
| 1130 |
+
)
|
| 1131 |
+
x = torch.utils.checkpoint.checkpoint(
|
| 1132 |
+
create_custom_forward(block),
|
| 1133 |
+
x,
|
| 1134 |
+
**kwargs,
|
| 1135 |
+
use_reentrant=False,
|
| 1136 |
+
)
|
| 1137 |
+
else:
|
| 1138 |
+
kwargs.update(
|
| 1139 |
+
{
|
| 1140 |
+
"kv_cache": kv_cache[block_index],
|
| 1141 |
+
"crossattn_cache": crossattn_cache[block_index],
|
| 1142 |
+
"current_start": current_start,
|
| 1143 |
+
"cache_start": cache_start,
|
| 1144 |
+
}
|
| 1145 |
+
)
|
| 1146 |
+
x = block(x, **kwargs)
|
| 1147 |
+
|
| 1148 |
+
# head
|
| 1149 |
+
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2))
|
| 1150 |
+
# unpatchify
|
| 1151 |
+
x = self.unpatchify(x, grid_sizes)
|
| 1152 |
+
return torch.stack(x)
|
| 1153 |
+
|
| 1154 |
+
def _forward_train(
|
| 1155 |
+
self,
|
| 1156 |
+
x,
|
| 1157 |
+
t,
|
| 1158 |
+
context,
|
| 1159 |
+
seq_len,
|
| 1160 |
+
clean_x=None,
|
| 1161 |
+
aug_t=None,
|
| 1162 |
+
clip_fea=None,
|
| 1163 |
+
y=None,
|
| 1164 |
+
):
|
| 1165 |
+
r"""
|
| 1166 |
+
Forward pass through the diffusion model
|
| 1167 |
+
|
| 1168 |
+
Args:
|
| 1169 |
+
x (List[Tensor]):
|
| 1170 |
+
List of input video tensors, each with shape [C_in, F, H, W]
|
| 1171 |
+
t (Tensor):
|
| 1172 |
+
Diffusion timesteps tensor of shape [B]
|
| 1173 |
+
context (List[Tensor]):
|
| 1174 |
+
List of text embeddings each with shape [L, C]
|
| 1175 |
+
seq_len (`int`):
|
| 1176 |
+
Maximum sequence length for positional encoding
|
| 1177 |
+
clip_fea (Tensor, *optional*):
|
| 1178 |
+
CLIP image features for image-to-video mode
|
| 1179 |
+
y (List[Tensor], *optional*):
|
| 1180 |
+
Conditional video inputs for image-to-video mode, same shape as x
|
| 1181 |
+
|
| 1182 |
+
Returns:
|
| 1183 |
+
List[Tensor]:
|
| 1184 |
+
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
| 1185 |
+
"""
|
| 1186 |
+
if self.model_type == "i2v":
|
| 1187 |
+
assert clip_fea is not None and y is not None
|
| 1188 |
+
# params
|
| 1189 |
+
device = self.patch_embedding.weight.device
|
| 1190 |
+
if self.freqs.device != device:
|
| 1191 |
+
self.freqs = self.freqs.to(device)
|
| 1192 |
+
|
| 1193 |
+
# Construct blockwise causal attn mask
|
| 1194 |
+
if self.block_mask is None:
|
| 1195 |
+
if clean_x is not None:
|
| 1196 |
+
if self.independent_first_frame:
|
| 1197 |
+
raise NotImplementedError()
|
| 1198 |
+
else:
|
| 1199 |
+
self.block_mask = self._prepare_teacher_forcing_mask(
|
| 1200 |
+
device,
|
| 1201 |
+
num_frames=x.shape[2],
|
| 1202 |
+
frame_seqlen=x.shape[-2]
|
| 1203 |
+
* x.shape[-1]
|
| 1204 |
+
// (self.patch_size[1] * self.patch_size[2]),
|
| 1205 |
+
num_frame_per_block=self.num_frame_per_block,
|
| 1206 |
+
)
|
| 1207 |
+
else:
|
| 1208 |
+
if self.independent_first_frame:
|
| 1209 |
+
self.block_mask = self._prepare_blockwise_causal_attn_mask_i2v(
|
| 1210 |
+
device,
|
| 1211 |
+
num_frames=x.shape[2],
|
| 1212 |
+
frame_seqlen=x.shape[-2]
|
| 1213 |
+
* x.shape[-1]
|
| 1214 |
+
// (self.patch_size[1] * self.patch_size[2]),
|
| 1215 |
+
num_frame_per_block=self.num_frame_per_block,
|
| 1216 |
+
local_attn_size=self.local_attn_size,
|
| 1217 |
+
)
|
| 1218 |
+
else:
|
| 1219 |
+
self.block_mask = self._prepare_blockwise_causal_attn_mask(
|
| 1220 |
+
device,
|
| 1221 |
+
num_frames=x.shape[2],
|
| 1222 |
+
frame_seqlen=x.shape[-2]
|
| 1223 |
+
* x.shape[-1]
|
| 1224 |
+
// (self.patch_size[1] * self.patch_size[2]),
|
| 1225 |
+
num_frame_per_block=self.num_frame_per_block,
|
| 1226 |
+
local_attn_size=self.local_attn_size,
|
| 1227 |
+
)
|
| 1228 |
+
|
| 1229 |
+
if y is not None:
|
| 1230 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
| 1231 |
+
|
| 1232 |
+
# embeddings
|
| 1233 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
| 1234 |
+
|
| 1235 |
+
grid_sizes = torch.stack(
|
| 1236 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]
|
| 1237 |
+
)
|
| 1238 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
| 1239 |
+
|
| 1240 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
| 1241 |
+
assert seq_lens.max() <= seq_len
|
| 1242 |
+
x = torch.cat(
|
| 1243 |
+
[
|
| 1244 |
+
torch.cat(
|
| 1245 |
+
[u, u.new_zeros(1, seq_lens[0] - u.size(1), u.size(2))], dim=1
|
| 1246 |
+
)
|
| 1247 |
+
for u in x
|
| 1248 |
+
]
|
| 1249 |
+
)
|
| 1250 |
+
|
| 1251 |
+
# time embeddings
|
| 1252 |
+
# with amp.autocast(dtype=torch.float32):
|
| 1253 |
+
e = self.time_embedding(
|
| 1254 |
+
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x)
|
| 1255 |
+
)
|
| 1256 |
+
e0 = (
|
| 1257 |
+
self.time_projection(e)
|
| 1258 |
+
.unflatten(1, (6, self.dim))
|
| 1259 |
+
.unflatten(dim=0, sizes=t.shape)
|
| 1260 |
+
)
|
| 1261 |
+
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
| 1262 |
+
|
| 1263 |
+
# context
|
| 1264 |
+
context_lens = None
|
| 1265 |
+
context = self.text_embedding(
|
| 1266 |
+
torch.stack(
|
| 1267 |
+
[
|
| 1268 |
+
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
| 1269 |
+
for u in context
|
| 1270 |
+
]
|
| 1271 |
+
)
|
| 1272 |
+
)
|
| 1273 |
+
|
| 1274 |
+
if clip_fea is not None:
|
| 1275 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
| 1276 |
+
context = torch.concat([context_clip, context], dim=1)
|
| 1277 |
+
|
| 1278 |
+
if clean_x is not None:
|
| 1279 |
+
clean_x = [self.patch_embedding(u.unsqueeze(0)) for u in clean_x]
|
| 1280 |
+
clean_x = [u.flatten(2).transpose(1, 2) for u in clean_x]
|
| 1281 |
+
|
| 1282 |
+
seq_lens_clean = torch.tensor(
|
| 1283 |
+
[u.size(1) for u in clean_x], dtype=torch.long
|
| 1284 |
+
)
|
| 1285 |
+
assert seq_lens_clean.max() <= seq_len
|
| 1286 |
+
clean_x = torch.cat(
|
| 1287 |
+
[
|
| 1288 |
+
torch.cat(
|
| 1289 |
+
[u, u.new_zeros(1, seq_lens_clean[0] - u.size(1), u.size(2))],
|
| 1290 |
+
dim=1,
|
| 1291 |
+
)
|
| 1292 |
+
for u in clean_x
|
| 1293 |
+
]
|
| 1294 |
+
)
|
| 1295 |
+
|
| 1296 |
+
x = torch.cat([clean_x, x], dim=1)
|
| 1297 |
+
if aug_t is None:
|
| 1298 |
+
aug_t = torch.zeros_like(t)
|
| 1299 |
+
e_clean = self.time_embedding(
|
| 1300 |
+
sinusoidal_embedding_1d(self.freq_dim, aug_t.flatten()).type_as(x)
|
| 1301 |
+
)
|
| 1302 |
+
e0_clean = (
|
| 1303 |
+
self.time_projection(e_clean)
|
| 1304 |
+
.unflatten(1, (6, self.dim))
|
| 1305 |
+
.unflatten(dim=0, sizes=t.shape)
|
| 1306 |
+
)
|
| 1307 |
+
e0 = torch.cat([e0_clean, e0], dim=1)
|
| 1308 |
+
|
| 1309 |
+
# arguments
|
| 1310 |
+
kwargs = dict(
|
| 1311 |
+
e=e0,
|
| 1312 |
+
seq_lens=seq_lens,
|
| 1313 |
+
grid_sizes=grid_sizes,
|
| 1314 |
+
freqs=self.freqs,
|
| 1315 |
+
context=context,
|
| 1316 |
+
context_lens=context_lens,
|
| 1317 |
+
block_mask=self.block_mask,
|
| 1318 |
+
)
|
| 1319 |
+
|
| 1320 |
+
def create_custom_forward(module):
|
| 1321 |
+
def custom_forward(*inputs, **kwargs):
|
| 1322 |
+
return module(*inputs, **kwargs)
|
| 1323 |
+
|
| 1324 |
+
return custom_forward
|
| 1325 |
+
|
| 1326 |
+
for block in self.blocks:
|
| 1327 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 1328 |
+
x = torch.utils.checkpoint.checkpoint(
|
| 1329 |
+
create_custom_forward(block),
|
| 1330 |
+
x,
|
| 1331 |
+
**kwargs,
|
| 1332 |
+
use_reentrant=False,
|
| 1333 |
+
)
|
| 1334 |
+
else:
|
| 1335 |
+
x = block(x, **kwargs)
|
| 1336 |
+
|
| 1337 |
+
if clean_x is not None:
|
| 1338 |
+
x = x[:, x.shape[1] // 2 :]
|
| 1339 |
+
|
| 1340 |
+
# head
|
| 1341 |
+
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2))
|
| 1342 |
+
|
| 1343 |
+
# unpatchify
|
| 1344 |
+
x = self.unpatchify(x, grid_sizes)
|
| 1345 |
+
return torch.stack(x)
|
| 1346 |
+
|
| 1347 |
+
def forward(self, *args, **kwargs):
|
| 1348 |
+
result = self._forward_inference(*args, **kwargs)
|
| 1349 |
+
# if kwargs.get('kv_cache', None) is not None:
|
| 1350 |
+
# else:
|
| 1351 |
+
# result = self._forward_train(*args, **kwargs)
|
| 1352 |
+
|
| 1353 |
+
return result
|
| 1354 |
+
|
| 1355 |
+
def unpatchify(self, x, grid_sizes):
|
| 1356 |
+
r"""
|
| 1357 |
+
Reconstruct video tensors from patch embeddings.
|
| 1358 |
+
|
| 1359 |
+
Args:
|
| 1360 |
+
x (List[Tensor]):
|
| 1361 |
+
List of patchified features, each with shape [L, C_out * prod(patch_size)]
|
| 1362 |
+
grid_sizes (Tensor):
|
| 1363 |
+
Original spatial-temporal grid dimensions before patching,
|
| 1364 |
+
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
|
| 1365 |
+
|
| 1366 |
+
Returns:
|
| 1367 |
+
List[Tensor]:
|
| 1368 |
+
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
|
| 1369 |
+
"""
|
| 1370 |
+
|
| 1371 |
+
c = self.out_dim
|
| 1372 |
+
out = []
|
| 1373 |
+
for u, v in zip(x, grid_sizes.tolist()):
|
| 1374 |
+
u = u[: math.prod(v)].view(*v, *self.patch_size, c)
|
| 1375 |
+
u = torch.einsum("fhwpqrc->cfphqwr", u)
|
| 1376 |
+
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
|
| 1377 |
+
out.append(u)
|
| 1378 |
+
return out
|
| 1379 |
+
|
| 1380 |
+
def init_weights(self):
|
| 1381 |
+
r"""
|
| 1382 |
+
Initialize model parameters using Xavier initialization.
|
| 1383 |
+
"""
|
| 1384 |
+
|
| 1385 |
+
# basic init
|
| 1386 |
+
for m in self.modules():
|
| 1387 |
+
if isinstance(m, nn.Linear):
|
| 1388 |
+
nn.init.xavier_uniform_(m.weight)
|
| 1389 |
+
if m.bias is not None:
|
| 1390 |
+
nn.init.zeros_(m.bias)
|
| 1391 |
+
|
| 1392 |
+
# init embeddings
|
| 1393 |
+
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
|
| 1394 |
+
for m in self.text_embedding.modules():
|
| 1395 |
+
if isinstance(m, nn.Linear):
|
| 1396 |
+
nn.init.normal_(m.weight, std=0.02)
|
| 1397 |
+
for m in self.time_embedding.modules():
|
| 1398 |
+
if isinstance(m, nn.Linear):
|
| 1399 |
+
nn.init.normal_(m.weight, std=0.02)
|
| 1400 |
+
|
| 1401 |
+
# init output layer
|
| 1402 |
+
nn.init.zeros_(self.head.head.weight)
|
transformer/config.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "CausalWanModel",
|
| 3 |
+
"_diffusers_version": "0.36.0.dev0",
|
| 4 |
+
"auto_map": {
|
| 5 |
+
"AutoModel": "causal_model.CausalWanModel"
|
| 6 |
+
},
|
| 7 |
+
"dim": 5120,
|
| 8 |
+
"eps": 1e-06,
|
| 9 |
+
"ffn_dim": 13824,
|
| 10 |
+
"freq_dim": 256,
|
| 11 |
+
"in_dim": 16,
|
| 12 |
+
"local_attn_size": -1,
|
| 13 |
+
"model_type": "t2v",
|
| 14 |
+
"num_heads": 40,
|
| 15 |
+
"num_layers": 40,
|
| 16 |
+
"out_dim": 16,
|
| 17 |
+
"sink_size": 0,
|
| 18 |
+
"text_len": 512
|
| 19 |
+
}
|
transformer/diffusion_pytorch_model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c179cb7e91005fe6e009bfb42df4ed70316f03bbc35d33e303021b33b564791
|
| 3 |
+
size 9968228976
|
transformer/diffusion_pytorch_model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3e0f19e177dd8d83e244281ffdada88c150e080a9503dfd0f78f5acfe63563a
|
| 3 |
+
size 9891538864
|
transformer/diffusion_pytorch_model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:15c15fb4b8b8a181ff23b142566389344fb34973dddc8c49b4ff0dee29db2735
|
| 3 |
+
size 8717326272
|
transformer/diffusion_pytorch_model.safetensors.index.json
ADDED
|
@@ -0,0 +1,1102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 28576983168
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"blocks.0.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 7 |
+
"blocks.0.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 8 |
+
"blocks.0.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 9 |
+
"blocks.0.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 10 |
+
"blocks.0.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 11 |
+
"blocks.0.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 12 |
+
"blocks.0.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 13 |
+
"blocks.0.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 14 |
+
"blocks.0.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 15 |
+
"blocks.0.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 16 |
+
"blocks.0.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 17 |
+
"blocks.0.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 18 |
+
"blocks.0.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 19 |
+
"blocks.0.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 20 |
+
"blocks.0.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 21 |
+
"blocks.0.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 22 |
+
"blocks.0.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 23 |
+
"blocks.0.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 24 |
+
"blocks.0.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 25 |
+
"blocks.0.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 26 |
+
"blocks.0.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 27 |
+
"blocks.0.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 28 |
+
"blocks.0.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 29 |
+
"blocks.0.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 30 |
+
"blocks.0.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 31 |
+
"blocks.0.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 32 |
+
"blocks.0.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 33 |
+
"blocks.1.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 34 |
+
"blocks.1.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 35 |
+
"blocks.1.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 36 |
+
"blocks.1.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 37 |
+
"blocks.1.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 38 |
+
"blocks.1.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 39 |
+
"blocks.1.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 40 |
+
"blocks.1.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 41 |
+
"blocks.1.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 42 |
+
"blocks.1.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 43 |
+
"blocks.1.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 44 |
+
"blocks.1.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 45 |
+
"blocks.1.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 46 |
+
"blocks.1.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 47 |
+
"blocks.1.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 48 |
+
"blocks.1.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 49 |
+
"blocks.1.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 50 |
+
"blocks.1.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 51 |
+
"blocks.1.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 52 |
+
"blocks.1.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 53 |
+
"blocks.1.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 54 |
+
"blocks.1.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 55 |
+
"blocks.1.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 56 |
+
"blocks.1.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 57 |
+
"blocks.1.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 58 |
+
"blocks.1.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 59 |
+
"blocks.1.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 60 |
+
"blocks.10.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 61 |
+
"blocks.10.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 62 |
+
"blocks.10.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 63 |
+
"blocks.10.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 64 |
+
"blocks.10.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 65 |
+
"blocks.10.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 66 |
+
"blocks.10.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 67 |
+
"blocks.10.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 68 |
+
"blocks.10.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 69 |
+
"blocks.10.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 70 |
+
"blocks.10.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 71 |
+
"blocks.10.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 72 |
+
"blocks.10.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 73 |
+
"blocks.10.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 74 |
+
"blocks.10.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 75 |
+
"blocks.10.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 76 |
+
"blocks.10.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 77 |
+
"blocks.10.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 78 |
+
"blocks.10.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 79 |
+
"blocks.10.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 80 |
+
"blocks.10.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 81 |
+
"blocks.10.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 82 |
+
"blocks.10.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 83 |
+
"blocks.10.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 84 |
+
"blocks.10.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 85 |
+
"blocks.10.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 86 |
+
"blocks.10.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 87 |
+
"blocks.11.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 88 |
+
"blocks.11.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 89 |
+
"blocks.11.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 90 |
+
"blocks.11.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 91 |
+
"blocks.11.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 92 |
+
"blocks.11.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 93 |
+
"blocks.11.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 94 |
+
"blocks.11.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 95 |
+
"blocks.11.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 96 |
+
"blocks.11.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 97 |
+
"blocks.11.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 98 |
+
"blocks.11.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 99 |
+
"blocks.11.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 100 |
+
"blocks.11.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 101 |
+
"blocks.11.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 102 |
+
"blocks.11.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 103 |
+
"blocks.11.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 104 |
+
"blocks.11.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 105 |
+
"blocks.11.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 106 |
+
"blocks.11.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 107 |
+
"blocks.11.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 108 |
+
"blocks.11.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 109 |
+
"blocks.11.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 110 |
+
"blocks.11.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 111 |
+
"blocks.11.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 112 |
+
"blocks.11.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 113 |
+
"blocks.11.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 114 |
+
"blocks.12.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 115 |
+
"blocks.12.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 116 |
+
"blocks.12.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 117 |
+
"blocks.12.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 118 |
+
"blocks.12.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 119 |
+
"blocks.12.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 120 |
+
"blocks.12.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 121 |
+
"blocks.12.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 122 |
+
"blocks.12.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 123 |
+
"blocks.12.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 124 |
+
"blocks.12.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 125 |
+
"blocks.12.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 126 |
+
"blocks.12.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 127 |
+
"blocks.12.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 128 |
+
"blocks.12.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 129 |
+
"blocks.12.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 130 |
+
"blocks.12.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 131 |
+
"blocks.12.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 132 |
+
"blocks.12.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 133 |
+
"blocks.12.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 134 |
+
"blocks.12.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 135 |
+
"blocks.12.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 136 |
+
"blocks.12.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 137 |
+
"blocks.12.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 138 |
+
"blocks.12.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 139 |
+
"blocks.12.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 140 |
+
"blocks.12.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 141 |
+
"blocks.13.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 142 |
+
"blocks.13.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 143 |
+
"blocks.13.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 144 |
+
"blocks.13.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 145 |
+
"blocks.13.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 146 |
+
"blocks.13.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 147 |
+
"blocks.13.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 148 |
+
"blocks.13.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 149 |
+
"blocks.13.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 150 |
+
"blocks.13.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 151 |
+
"blocks.13.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 152 |
+
"blocks.13.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 153 |
+
"blocks.13.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 154 |
+
"blocks.13.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 155 |
+
"blocks.13.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 156 |
+
"blocks.13.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 157 |
+
"blocks.13.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 158 |
+
"blocks.13.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 159 |
+
"blocks.13.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 160 |
+
"blocks.13.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 161 |
+
"blocks.13.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 162 |
+
"blocks.13.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 163 |
+
"blocks.13.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 164 |
+
"blocks.13.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 165 |
+
"blocks.13.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 166 |
+
"blocks.13.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 167 |
+
"blocks.13.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 168 |
+
"blocks.14.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 169 |
+
"blocks.14.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 170 |
+
"blocks.14.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 171 |
+
"blocks.14.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 172 |
+
"blocks.14.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 173 |
+
"blocks.14.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 174 |
+
"blocks.14.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 175 |
+
"blocks.14.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 176 |
+
"blocks.14.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 177 |
+
"blocks.14.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 178 |
+
"blocks.14.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 179 |
+
"blocks.14.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 180 |
+
"blocks.14.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 181 |
+
"blocks.14.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 182 |
+
"blocks.14.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 183 |
+
"blocks.14.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 184 |
+
"blocks.14.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 185 |
+
"blocks.14.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 186 |
+
"blocks.14.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 187 |
+
"blocks.14.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 188 |
+
"blocks.14.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 189 |
+
"blocks.14.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 190 |
+
"blocks.14.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 191 |
+
"blocks.14.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 192 |
+
"blocks.14.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 193 |
+
"blocks.14.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 194 |
+
"blocks.14.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 195 |
+
"blocks.15.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 196 |
+
"blocks.15.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 197 |
+
"blocks.15.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 198 |
+
"blocks.15.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 199 |
+
"blocks.15.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 200 |
+
"blocks.15.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 201 |
+
"blocks.15.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 202 |
+
"blocks.15.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 203 |
+
"blocks.15.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 204 |
+
"blocks.15.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 205 |
+
"blocks.15.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 206 |
+
"blocks.15.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 207 |
+
"blocks.15.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 208 |
+
"blocks.15.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 209 |
+
"blocks.15.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 210 |
+
"blocks.15.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 211 |
+
"blocks.15.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 212 |
+
"blocks.15.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 213 |
+
"blocks.15.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 214 |
+
"blocks.15.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 215 |
+
"blocks.15.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 216 |
+
"blocks.15.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 217 |
+
"blocks.15.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 218 |
+
"blocks.15.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 219 |
+
"blocks.15.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 220 |
+
"blocks.15.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 221 |
+
"blocks.15.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 222 |
+
"blocks.16.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 223 |
+
"blocks.16.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 224 |
+
"blocks.16.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 225 |
+
"blocks.16.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 226 |
+
"blocks.16.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 227 |
+
"blocks.16.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 228 |
+
"blocks.16.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 229 |
+
"blocks.16.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 230 |
+
"blocks.16.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 231 |
+
"blocks.16.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 232 |
+
"blocks.16.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 233 |
+
"blocks.16.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 234 |
+
"blocks.16.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 235 |
+
"blocks.16.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 236 |
+
"blocks.16.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 237 |
+
"blocks.16.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 238 |
+
"blocks.16.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 239 |
+
"blocks.16.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 240 |
+
"blocks.16.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 241 |
+
"blocks.16.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 242 |
+
"blocks.16.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 243 |
+
"blocks.16.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 244 |
+
"blocks.16.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 245 |
+
"blocks.16.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 246 |
+
"blocks.16.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 247 |
+
"blocks.16.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 248 |
+
"blocks.16.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 249 |
+
"blocks.17.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 250 |
+
"blocks.17.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 251 |
+
"blocks.17.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 252 |
+
"blocks.17.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 253 |
+
"blocks.17.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 254 |
+
"blocks.17.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 255 |
+
"blocks.17.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 256 |
+
"blocks.17.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 257 |
+
"blocks.17.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 258 |
+
"blocks.17.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 259 |
+
"blocks.17.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 260 |
+
"blocks.17.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 261 |
+
"blocks.17.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 262 |
+
"blocks.17.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 263 |
+
"blocks.17.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 264 |
+
"blocks.17.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 265 |
+
"blocks.17.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 266 |
+
"blocks.17.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 267 |
+
"blocks.17.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 268 |
+
"blocks.17.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 269 |
+
"blocks.17.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 270 |
+
"blocks.17.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 271 |
+
"blocks.17.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 272 |
+
"blocks.17.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 273 |
+
"blocks.17.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 274 |
+
"blocks.17.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 275 |
+
"blocks.17.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 276 |
+
"blocks.18.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 277 |
+
"blocks.18.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 278 |
+
"blocks.18.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 279 |
+
"blocks.18.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 280 |
+
"blocks.18.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 281 |
+
"blocks.18.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 282 |
+
"blocks.18.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 283 |
+
"blocks.18.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 284 |
+
"blocks.18.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 285 |
+
"blocks.18.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 286 |
+
"blocks.18.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 287 |
+
"blocks.18.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 288 |
+
"blocks.18.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 289 |
+
"blocks.18.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 290 |
+
"blocks.18.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 291 |
+
"blocks.18.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 292 |
+
"blocks.18.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 293 |
+
"blocks.18.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 294 |
+
"blocks.18.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 295 |
+
"blocks.18.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 296 |
+
"blocks.18.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 297 |
+
"blocks.18.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 298 |
+
"blocks.18.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 299 |
+
"blocks.18.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 300 |
+
"blocks.18.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 301 |
+
"blocks.18.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 302 |
+
"blocks.18.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 303 |
+
"blocks.19.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 304 |
+
"blocks.19.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 305 |
+
"blocks.19.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 306 |
+
"blocks.19.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 307 |
+
"blocks.19.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 308 |
+
"blocks.19.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 309 |
+
"blocks.19.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 310 |
+
"blocks.19.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 311 |
+
"blocks.19.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 312 |
+
"blocks.19.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 313 |
+
"blocks.19.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 314 |
+
"blocks.19.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 315 |
+
"blocks.19.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 316 |
+
"blocks.19.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 317 |
+
"blocks.19.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 318 |
+
"blocks.19.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 319 |
+
"blocks.19.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 320 |
+
"blocks.19.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 321 |
+
"blocks.19.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 322 |
+
"blocks.19.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 323 |
+
"blocks.19.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 324 |
+
"blocks.19.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 325 |
+
"blocks.19.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 326 |
+
"blocks.19.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 327 |
+
"blocks.19.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 328 |
+
"blocks.19.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 329 |
+
"blocks.19.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 330 |
+
"blocks.2.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 331 |
+
"blocks.2.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 332 |
+
"blocks.2.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 333 |
+
"blocks.2.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 334 |
+
"blocks.2.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 335 |
+
"blocks.2.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 336 |
+
"blocks.2.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 337 |
+
"blocks.2.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 338 |
+
"blocks.2.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 339 |
+
"blocks.2.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 340 |
+
"blocks.2.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 341 |
+
"blocks.2.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 342 |
+
"blocks.2.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 343 |
+
"blocks.2.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 344 |
+
"blocks.2.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 345 |
+
"blocks.2.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 346 |
+
"blocks.2.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 347 |
+
"blocks.2.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 348 |
+
"blocks.2.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 349 |
+
"blocks.2.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 350 |
+
"blocks.2.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 351 |
+
"blocks.2.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 352 |
+
"blocks.2.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 353 |
+
"blocks.2.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 354 |
+
"blocks.2.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 355 |
+
"blocks.2.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 356 |
+
"blocks.2.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 357 |
+
"blocks.20.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 358 |
+
"blocks.20.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 359 |
+
"blocks.20.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 360 |
+
"blocks.20.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 361 |
+
"blocks.20.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 362 |
+
"blocks.20.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 363 |
+
"blocks.20.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 364 |
+
"blocks.20.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 365 |
+
"blocks.20.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 366 |
+
"blocks.20.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 367 |
+
"blocks.20.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 368 |
+
"blocks.20.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 369 |
+
"blocks.20.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 370 |
+
"blocks.20.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 371 |
+
"blocks.20.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 372 |
+
"blocks.20.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 373 |
+
"blocks.20.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 374 |
+
"blocks.20.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 375 |
+
"blocks.20.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 376 |
+
"blocks.20.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 377 |
+
"blocks.20.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 378 |
+
"blocks.20.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 379 |
+
"blocks.20.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 380 |
+
"blocks.20.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 381 |
+
"blocks.20.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 382 |
+
"blocks.20.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 383 |
+
"blocks.20.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 384 |
+
"blocks.21.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 385 |
+
"blocks.21.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 386 |
+
"blocks.21.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 387 |
+
"blocks.21.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 388 |
+
"blocks.21.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 389 |
+
"blocks.21.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 390 |
+
"blocks.21.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 391 |
+
"blocks.21.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 392 |
+
"blocks.21.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 393 |
+
"blocks.21.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 394 |
+
"blocks.21.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 395 |
+
"blocks.21.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 396 |
+
"blocks.21.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 397 |
+
"blocks.21.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 398 |
+
"blocks.21.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 399 |
+
"blocks.21.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 400 |
+
"blocks.21.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 401 |
+
"blocks.21.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 402 |
+
"blocks.21.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 403 |
+
"blocks.21.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 404 |
+
"blocks.21.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 405 |
+
"blocks.21.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 406 |
+
"blocks.21.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 407 |
+
"blocks.21.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 408 |
+
"blocks.21.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 409 |
+
"blocks.21.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 410 |
+
"blocks.21.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 411 |
+
"blocks.22.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 412 |
+
"blocks.22.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 413 |
+
"blocks.22.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 414 |
+
"blocks.22.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 415 |
+
"blocks.22.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 416 |
+
"blocks.22.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 417 |
+
"blocks.22.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 418 |
+
"blocks.22.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 419 |
+
"blocks.22.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 420 |
+
"blocks.22.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 421 |
+
"blocks.22.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 422 |
+
"blocks.22.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 423 |
+
"blocks.22.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 424 |
+
"blocks.22.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 425 |
+
"blocks.22.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 426 |
+
"blocks.22.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 427 |
+
"blocks.22.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 428 |
+
"blocks.22.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 429 |
+
"blocks.22.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 430 |
+
"blocks.22.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 431 |
+
"blocks.22.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 432 |
+
"blocks.22.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 433 |
+
"blocks.22.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 434 |
+
"blocks.22.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 435 |
+
"blocks.22.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 436 |
+
"blocks.22.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 437 |
+
"blocks.22.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 438 |
+
"blocks.23.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 439 |
+
"blocks.23.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 440 |
+
"blocks.23.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 441 |
+
"blocks.23.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 442 |
+
"blocks.23.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 443 |
+
"blocks.23.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 444 |
+
"blocks.23.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 445 |
+
"blocks.23.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 446 |
+
"blocks.23.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 447 |
+
"blocks.23.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 448 |
+
"blocks.23.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 449 |
+
"blocks.23.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 450 |
+
"blocks.23.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 451 |
+
"blocks.23.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 452 |
+
"blocks.23.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 453 |
+
"blocks.23.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 454 |
+
"blocks.23.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 455 |
+
"blocks.23.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 456 |
+
"blocks.23.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 457 |
+
"blocks.23.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 458 |
+
"blocks.23.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 459 |
+
"blocks.23.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 460 |
+
"blocks.23.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 461 |
+
"blocks.23.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 462 |
+
"blocks.23.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 463 |
+
"blocks.23.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 464 |
+
"blocks.23.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 465 |
+
"blocks.24.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 466 |
+
"blocks.24.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 467 |
+
"blocks.24.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 468 |
+
"blocks.24.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 469 |
+
"blocks.24.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 470 |
+
"blocks.24.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 471 |
+
"blocks.24.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 472 |
+
"blocks.24.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 473 |
+
"blocks.24.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 474 |
+
"blocks.24.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 475 |
+
"blocks.24.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 476 |
+
"blocks.24.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 477 |
+
"blocks.24.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 478 |
+
"blocks.24.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 479 |
+
"blocks.24.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 480 |
+
"blocks.24.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 481 |
+
"blocks.24.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 482 |
+
"blocks.24.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 483 |
+
"blocks.24.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 484 |
+
"blocks.24.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 485 |
+
"blocks.24.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 486 |
+
"blocks.24.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 487 |
+
"blocks.24.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 488 |
+
"blocks.24.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 489 |
+
"blocks.24.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 490 |
+
"blocks.24.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 491 |
+
"blocks.24.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 492 |
+
"blocks.25.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 493 |
+
"blocks.25.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 494 |
+
"blocks.25.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 495 |
+
"blocks.25.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 496 |
+
"blocks.25.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 497 |
+
"blocks.25.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 498 |
+
"blocks.25.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 499 |
+
"blocks.25.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 500 |
+
"blocks.25.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 501 |
+
"blocks.25.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 502 |
+
"blocks.25.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 503 |
+
"blocks.25.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 504 |
+
"blocks.25.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 505 |
+
"blocks.25.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 506 |
+
"blocks.25.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 507 |
+
"blocks.25.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 508 |
+
"blocks.25.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 509 |
+
"blocks.25.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 510 |
+
"blocks.25.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 511 |
+
"blocks.25.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 512 |
+
"blocks.25.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 513 |
+
"blocks.25.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 514 |
+
"blocks.25.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 515 |
+
"blocks.25.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 516 |
+
"blocks.25.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 517 |
+
"blocks.25.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 518 |
+
"blocks.25.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 519 |
+
"blocks.26.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 520 |
+
"blocks.26.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 521 |
+
"blocks.26.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 522 |
+
"blocks.26.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 523 |
+
"blocks.26.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 524 |
+
"blocks.26.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 525 |
+
"blocks.26.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 526 |
+
"blocks.26.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 527 |
+
"blocks.26.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 528 |
+
"blocks.26.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 529 |
+
"blocks.26.ffn.0.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 530 |
+
"blocks.26.ffn.0.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 531 |
+
"blocks.26.ffn.2.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 532 |
+
"blocks.26.ffn.2.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 533 |
+
"blocks.26.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 534 |
+
"blocks.26.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 535 |
+
"blocks.26.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 536 |
+
"blocks.26.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 537 |
+
"blocks.26.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 538 |
+
"blocks.26.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 539 |
+
"blocks.26.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 540 |
+
"blocks.26.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 541 |
+
"blocks.26.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 542 |
+
"blocks.26.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 543 |
+
"blocks.26.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 544 |
+
"blocks.26.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 545 |
+
"blocks.26.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 546 |
+
"blocks.27.cross_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 547 |
+
"blocks.27.cross_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 548 |
+
"blocks.27.cross_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 549 |
+
"blocks.27.cross_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 550 |
+
"blocks.27.cross_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 551 |
+
"blocks.27.cross_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 552 |
+
"blocks.27.cross_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 553 |
+
"blocks.27.cross_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 554 |
+
"blocks.27.cross_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 555 |
+
"blocks.27.cross_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 556 |
+
"blocks.27.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 557 |
+
"blocks.27.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 558 |
+
"blocks.27.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 559 |
+
"blocks.27.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 560 |
+
"blocks.27.modulation": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 561 |
+
"blocks.27.norm3.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 562 |
+
"blocks.27.norm3.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 563 |
+
"blocks.27.self_attn.k.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 564 |
+
"blocks.27.self_attn.k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 565 |
+
"blocks.27.self_attn.norm_k.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 566 |
+
"blocks.27.self_attn.norm_q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 567 |
+
"blocks.27.self_attn.o.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 568 |
+
"blocks.27.self_attn.o.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 569 |
+
"blocks.27.self_attn.q.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 570 |
+
"blocks.27.self_attn.q.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 571 |
+
"blocks.27.self_attn.v.bias": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 572 |
+
"blocks.27.self_attn.v.weight": "diffusion_pytorch_model-00002-of-00003.safetensors",
|
| 573 |
+
"blocks.28.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 574 |
+
"blocks.28.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 575 |
+
"blocks.28.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 576 |
+
"blocks.28.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 577 |
+
"blocks.28.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 578 |
+
"blocks.28.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 579 |
+
"blocks.28.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 580 |
+
"blocks.28.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 581 |
+
"blocks.28.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 582 |
+
"blocks.28.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 583 |
+
"blocks.28.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 584 |
+
"blocks.28.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 585 |
+
"blocks.28.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 586 |
+
"blocks.28.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 587 |
+
"blocks.28.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 588 |
+
"blocks.28.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 589 |
+
"blocks.28.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 590 |
+
"blocks.28.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 591 |
+
"blocks.28.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 592 |
+
"blocks.28.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 593 |
+
"blocks.28.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 594 |
+
"blocks.28.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 595 |
+
"blocks.28.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 596 |
+
"blocks.28.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 597 |
+
"blocks.28.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 598 |
+
"blocks.28.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 599 |
+
"blocks.28.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 600 |
+
"blocks.29.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 601 |
+
"blocks.29.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 602 |
+
"blocks.29.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 603 |
+
"blocks.29.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 604 |
+
"blocks.29.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 605 |
+
"blocks.29.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 606 |
+
"blocks.29.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 607 |
+
"blocks.29.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 608 |
+
"blocks.29.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 609 |
+
"blocks.29.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 610 |
+
"blocks.29.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 611 |
+
"blocks.29.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 612 |
+
"blocks.29.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 613 |
+
"blocks.29.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 614 |
+
"blocks.29.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 615 |
+
"blocks.29.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 616 |
+
"blocks.29.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 617 |
+
"blocks.29.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 618 |
+
"blocks.29.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 619 |
+
"blocks.29.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 620 |
+
"blocks.29.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 621 |
+
"blocks.29.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 622 |
+
"blocks.29.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 623 |
+
"blocks.29.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 624 |
+
"blocks.29.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 625 |
+
"blocks.29.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 626 |
+
"blocks.29.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 627 |
+
"blocks.3.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 628 |
+
"blocks.3.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 629 |
+
"blocks.3.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 630 |
+
"blocks.3.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 631 |
+
"blocks.3.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 632 |
+
"blocks.3.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 633 |
+
"blocks.3.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 634 |
+
"blocks.3.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 635 |
+
"blocks.3.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 636 |
+
"blocks.3.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 637 |
+
"blocks.3.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 638 |
+
"blocks.3.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 639 |
+
"blocks.3.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 640 |
+
"blocks.3.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 641 |
+
"blocks.3.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 642 |
+
"blocks.3.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 643 |
+
"blocks.3.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 644 |
+
"blocks.3.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 645 |
+
"blocks.3.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 646 |
+
"blocks.3.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 647 |
+
"blocks.3.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 648 |
+
"blocks.3.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 649 |
+
"blocks.3.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 650 |
+
"blocks.3.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 651 |
+
"blocks.3.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 652 |
+
"blocks.3.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 653 |
+
"blocks.3.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 654 |
+
"blocks.30.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 655 |
+
"blocks.30.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 656 |
+
"blocks.30.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 657 |
+
"blocks.30.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 658 |
+
"blocks.30.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 659 |
+
"blocks.30.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 660 |
+
"blocks.30.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 661 |
+
"blocks.30.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 662 |
+
"blocks.30.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 663 |
+
"blocks.30.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 664 |
+
"blocks.30.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 665 |
+
"blocks.30.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 666 |
+
"blocks.30.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 667 |
+
"blocks.30.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 668 |
+
"blocks.30.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 669 |
+
"blocks.30.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 670 |
+
"blocks.30.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 671 |
+
"blocks.30.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 672 |
+
"blocks.30.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 673 |
+
"blocks.30.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 674 |
+
"blocks.30.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 675 |
+
"blocks.30.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 676 |
+
"blocks.30.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 677 |
+
"blocks.30.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 678 |
+
"blocks.30.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 679 |
+
"blocks.30.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 680 |
+
"blocks.30.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 681 |
+
"blocks.31.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 682 |
+
"blocks.31.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 683 |
+
"blocks.31.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 684 |
+
"blocks.31.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 685 |
+
"blocks.31.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 686 |
+
"blocks.31.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 687 |
+
"blocks.31.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 688 |
+
"blocks.31.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 689 |
+
"blocks.31.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 690 |
+
"blocks.31.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 691 |
+
"blocks.31.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 692 |
+
"blocks.31.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 693 |
+
"blocks.31.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 694 |
+
"blocks.31.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 695 |
+
"blocks.31.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 696 |
+
"blocks.31.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 697 |
+
"blocks.31.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 698 |
+
"blocks.31.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 699 |
+
"blocks.31.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 700 |
+
"blocks.31.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 701 |
+
"blocks.31.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 702 |
+
"blocks.31.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 703 |
+
"blocks.31.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 704 |
+
"blocks.31.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 705 |
+
"blocks.31.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 706 |
+
"blocks.31.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 707 |
+
"blocks.31.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 708 |
+
"blocks.32.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 709 |
+
"blocks.32.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 710 |
+
"blocks.32.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 711 |
+
"blocks.32.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 712 |
+
"blocks.32.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 713 |
+
"blocks.32.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 714 |
+
"blocks.32.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 715 |
+
"blocks.32.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 716 |
+
"blocks.32.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 717 |
+
"blocks.32.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 718 |
+
"blocks.32.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 719 |
+
"blocks.32.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 720 |
+
"blocks.32.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 721 |
+
"blocks.32.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 722 |
+
"blocks.32.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 723 |
+
"blocks.32.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 724 |
+
"blocks.32.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 725 |
+
"blocks.32.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 726 |
+
"blocks.32.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 727 |
+
"blocks.32.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 728 |
+
"blocks.32.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 729 |
+
"blocks.32.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 730 |
+
"blocks.32.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 731 |
+
"blocks.32.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 732 |
+
"blocks.32.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 733 |
+
"blocks.32.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 734 |
+
"blocks.32.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 735 |
+
"blocks.33.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 736 |
+
"blocks.33.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 737 |
+
"blocks.33.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 738 |
+
"blocks.33.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 739 |
+
"blocks.33.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 740 |
+
"blocks.33.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 741 |
+
"blocks.33.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 742 |
+
"blocks.33.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 743 |
+
"blocks.33.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 744 |
+
"blocks.33.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 745 |
+
"blocks.33.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 746 |
+
"blocks.33.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 747 |
+
"blocks.33.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 748 |
+
"blocks.33.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 749 |
+
"blocks.33.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 750 |
+
"blocks.33.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 751 |
+
"blocks.33.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 752 |
+
"blocks.33.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 753 |
+
"blocks.33.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 754 |
+
"blocks.33.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 755 |
+
"blocks.33.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 756 |
+
"blocks.33.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 757 |
+
"blocks.33.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 758 |
+
"blocks.33.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 759 |
+
"blocks.33.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 760 |
+
"blocks.33.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 761 |
+
"blocks.33.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 762 |
+
"blocks.34.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 763 |
+
"blocks.34.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 764 |
+
"blocks.34.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 765 |
+
"blocks.34.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 766 |
+
"blocks.34.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 767 |
+
"blocks.34.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 768 |
+
"blocks.34.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 769 |
+
"blocks.34.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 770 |
+
"blocks.34.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 771 |
+
"blocks.34.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 772 |
+
"blocks.34.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 773 |
+
"blocks.34.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 774 |
+
"blocks.34.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 775 |
+
"blocks.34.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 776 |
+
"blocks.34.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 777 |
+
"blocks.34.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 778 |
+
"blocks.34.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 779 |
+
"blocks.34.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 780 |
+
"blocks.34.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 781 |
+
"blocks.34.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 782 |
+
"blocks.34.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 783 |
+
"blocks.34.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 784 |
+
"blocks.34.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 785 |
+
"blocks.34.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 786 |
+
"blocks.34.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 787 |
+
"blocks.34.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 788 |
+
"blocks.34.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 789 |
+
"blocks.35.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 790 |
+
"blocks.35.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 791 |
+
"blocks.35.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 792 |
+
"blocks.35.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 793 |
+
"blocks.35.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 794 |
+
"blocks.35.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 795 |
+
"blocks.35.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 796 |
+
"blocks.35.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 797 |
+
"blocks.35.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 798 |
+
"blocks.35.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 799 |
+
"blocks.35.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 800 |
+
"blocks.35.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 801 |
+
"blocks.35.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 802 |
+
"blocks.35.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 803 |
+
"blocks.35.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 804 |
+
"blocks.35.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 805 |
+
"blocks.35.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 806 |
+
"blocks.35.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 807 |
+
"blocks.35.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 808 |
+
"blocks.35.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 809 |
+
"blocks.35.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 810 |
+
"blocks.35.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 811 |
+
"blocks.35.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 812 |
+
"blocks.35.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 813 |
+
"blocks.35.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 814 |
+
"blocks.35.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 815 |
+
"blocks.35.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 816 |
+
"blocks.36.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 817 |
+
"blocks.36.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 818 |
+
"blocks.36.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 819 |
+
"blocks.36.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 820 |
+
"blocks.36.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 821 |
+
"blocks.36.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 822 |
+
"blocks.36.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 823 |
+
"blocks.36.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 824 |
+
"blocks.36.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 825 |
+
"blocks.36.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 826 |
+
"blocks.36.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 827 |
+
"blocks.36.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 828 |
+
"blocks.36.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 829 |
+
"blocks.36.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 830 |
+
"blocks.36.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 831 |
+
"blocks.36.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 832 |
+
"blocks.36.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 833 |
+
"blocks.36.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 834 |
+
"blocks.36.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 835 |
+
"blocks.36.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 836 |
+
"blocks.36.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 837 |
+
"blocks.36.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 838 |
+
"blocks.36.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 839 |
+
"blocks.36.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 840 |
+
"blocks.36.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 841 |
+
"blocks.36.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 842 |
+
"blocks.36.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 843 |
+
"blocks.37.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 844 |
+
"blocks.37.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 845 |
+
"blocks.37.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 846 |
+
"blocks.37.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 847 |
+
"blocks.37.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 848 |
+
"blocks.37.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 849 |
+
"blocks.37.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 850 |
+
"blocks.37.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 851 |
+
"blocks.37.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 852 |
+
"blocks.37.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 853 |
+
"blocks.37.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 854 |
+
"blocks.37.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 855 |
+
"blocks.37.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 856 |
+
"blocks.37.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 857 |
+
"blocks.37.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 858 |
+
"blocks.37.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 859 |
+
"blocks.37.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 860 |
+
"blocks.37.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 861 |
+
"blocks.37.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 862 |
+
"blocks.37.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 863 |
+
"blocks.37.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 864 |
+
"blocks.37.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 865 |
+
"blocks.37.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 866 |
+
"blocks.37.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 867 |
+
"blocks.37.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 868 |
+
"blocks.37.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 869 |
+
"blocks.37.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 870 |
+
"blocks.38.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 871 |
+
"blocks.38.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 872 |
+
"blocks.38.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 873 |
+
"blocks.38.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 874 |
+
"blocks.38.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 875 |
+
"blocks.38.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 876 |
+
"blocks.38.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 877 |
+
"blocks.38.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 878 |
+
"blocks.38.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 879 |
+
"blocks.38.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 880 |
+
"blocks.38.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 881 |
+
"blocks.38.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 882 |
+
"blocks.38.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 883 |
+
"blocks.38.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 884 |
+
"blocks.38.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 885 |
+
"blocks.38.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 886 |
+
"blocks.38.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 887 |
+
"blocks.38.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 888 |
+
"blocks.38.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 889 |
+
"blocks.38.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 890 |
+
"blocks.38.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 891 |
+
"blocks.38.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 892 |
+
"blocks.38.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 893 |
+
"blocks.38.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 894 |
+
"blocks.38.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 895 |
+
"blocks.38.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 896 |
+
"blocks.38.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 897 |
+
"blocks.39.cross_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 898 |
+
"blocks.39.cross_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 899 |
+
"blocks.39.cross_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 900 |
+
"blocks.39.cross_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 901 |
+
"blocks.39.cross_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 902 |
+
"blocks.39.cross_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 903 |
+
"blocks.39.cross_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 904 |
+
"blocks.39.cross_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 905 |
+
"blocks.39.cross_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 906 |
+
"blocks.39.cross_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 907 |
+
"blocks.39.ffn.0.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 908 |
+
"blocks.39.ffn.0.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 909 |
+
"blocks.39.ffn.2.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 910 |
+
"blocks.39.ffn.2.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 911 |
+
"blocks.39.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 912 |
+
"blocks.39.norm3.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 913 |
+
"blocks.39.norm3.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 914 |
+
"blocks.39.self_attn.k.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 915 |
+
"blocks.39.self_attn.k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 916 |
+
"blocks.39.self_attn.norm_k.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 917 |
+
"blocks.39.self_attn.norm_q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 918 |
+
"blocks.39.self_attn.o.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 919 |
+
"blocks.39.self_attn.o.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 920 |
+
"blocks.39.self_attn.q.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 921 |
+
"blocks.39.self_attn.q.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 922 |
+
"blocks.39.self_attn.v.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 923 |
+
"blocks.39.self_attn.v.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 924 |
+
"blocks.4.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 925 |
+
"blocks.4.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 926 |
+
"blocks.4.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 927 |
+
"blocks.4.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 928 |
+
"blocks.4.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 929 |
+
"blocks.4.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 930 |
+
"blocks.4.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 931 |
+
"blocks.4.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 932 |
+
"blocks.4.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 933 |
+
"blocks.4.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 934 |
+
"blocks.4.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 935 |
+
"blocks.4.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 936 |
+
"blocks.4.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 937 |
+
"blocks.4.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 938 |
+
"blocks.4.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 939 |
+
"blocks.4.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 940 |
+
"blocks.4.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 941 |
+
"blocks.4.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 942 |
+
"blocks.4.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 943 |
+
"blocks.4.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 944 |
+
"blocks.4.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 945 |
+
"blocks.4.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 946 |
+
"blocks.4.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 947 |
+
"blocks.4.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 948 |
+
"blocks.4.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 949 |
+
"blocks.4.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 950 |
+
"blocks.4.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 951 |
+
"blocks.5.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 952 |
+
"blocks.5.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 953 |
+
"blocks.5.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 954 |
+
"blocks.5.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 955 |
+
"blocks.5.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 956 |
+
"blocks.5.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 957 |
+
"blocks.5.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 958 |
+
"blocks.5.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 959 |
+
"blocks.5.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 960 |
+
"blocks.5.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 961 |
+
"blocks.5.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 962 |
+
"blocks.5.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 963 |
+
"blocks.5.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 964 |
+
"blocks.5.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 965 |
+
"blocks.5.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 966 |
+
"blocks.5.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 967 |
+
"blocks.5.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 968 |
+
"blocks.5.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 969 |
+
"blocks.5.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 970 |
+
"blocks.5.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 971 |
+
"blocks.5.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 972 |
+
"blocks.5.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 973 |
+
"blocks.5.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 974 |
+
"blocks.5.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 975 |
+
"blocks.5.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 976 |
+
"blocks.5.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 977 |
+
"blocks.5.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 978 |
+
"blocks.6.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 979 |
+
"blocks.6.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 980 |
+
"blocks.6.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 981 |
+
"blocks.6.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 982 |
+
"blocks.6.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 983 |
+
"blocks.6.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 984 |
+
"blocks.6.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 985 |
+
"blocks.6.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 986 |
+
"blocks.6.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 987 |
+
"blocks.6.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 988 |
+
"blocks.6.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 989 |
+
"blocks.6.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 990 |
+
"blocks.6.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 991 |
+
"blocks.6.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 992 |
+
"blocks.6.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 993 |
+
"blocks.6.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 994 |
+
"blocks.6.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 995 |
+
"blocks.6.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 996 |
+
"blocks.6.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 997 |
+
"blocks.6.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 998 |
+
"blocks.6.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 999 |
+
"blocks.6.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1000 |
+
"blocks.6.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1001 |
+
"blocks.6.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1002 |
+
"blocks.6.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1003 |
+
"blocks.6.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1004 |
+
"blocks.6.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1005 |
+
"blocks.7.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1006 |
+
"blocks.7.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1007 |
+
"blocks.7.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1008 |
+
"blocks.7.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1009 |
+
"blocks.7.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1010 |
+
"blocks.7.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1011 |
+
"blocks.7.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1012 |
+
"blocks.7.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1013 |
+
"blocks.7.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1014 |
+
"blocks.7.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1015 |
+
"blocks.7.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1016 |
+
"blocks.7.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1017 |
+
"blocks.7.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1018 |
+
"blocks.7.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1019 |
+
"blocks.7.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1020 |
+
"blocks.7.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1021 |
+
"blocks.7.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1022 |
+
"blocks.7.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1023 |
+
"blocks.7.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1024 |
+
"blocks.7.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1025 |
+
"blocks.7.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1026 |
+
"blocks.7.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1027 |
+
"blocks.7.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1028 |
+
"blocks.7.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1029 |
+
"blocks.7.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1030 |
+
"blocks.7.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1031 |
+
"blocks.7.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1032 |
+
"blocks.8.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1033 |
+
"blocks.8.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1034 |
+
"blocks.8.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1035 |
+
"blocks.8.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1036 |
+
"blocks.8.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1037 |
+
"blocks.8.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1038 |
+
"blocks.8.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1039 |
+
"blocks.8.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1040 |
+
"blocks.8.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1041 |
+
"blocks.8.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1042 |
+
"blocks.8.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1043 |
+
"blocks.8.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1044 |
+
"blocks.8.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1045 |
+
"blocks.8.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1046 |
+
"blocks.8.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1047 |
+
"blocks.8.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1048 |
+
"blocks.8.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1049 |
+
"blocks.8.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1050 |
+
"blocks.8.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1051 |
+
"blocks.8.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1052 |
+
"blocks.8.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1053 |
+
"blocks.8.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1054 |
+
"blocks.8.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1055 |
+
"blocks.8.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1056 |
+
"blocks.8.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1057 |
+
"blocks.8.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1058 |
+
"blocks.8.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1059 |
+
"blocks.9.cross_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1060 |
+
"blocks.9.cross_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1061 |
+
"blocks.9.cross_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1062 |
+
"blocks.9.cross_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1063 |
+
"blocks.9.cross_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1064 |
+
"blocks.9.cross_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1065 |
+
"blocks.9.cross_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1066 |
+
"blocks.9.cross_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1067 |
+
"blocks.9.cross_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1068 |
+
"blocks.9.cross_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1069 |
+
"blocks.9.ffn.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1070 |
+
"blocks.9.ffn.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1071 |
+
"blocks.9.ffn.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1072 |
+
"blocks.9.ffn.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1073 |
+
"blocks.9.modulation": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1074 |
+
"blocks.9.norm3.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1075 |
+
"blocks.9.norm3.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1076 |
+
"blocks.9.self_attn.k.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1077 |
+
"blocks.9.self_attn.k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1078 |
+
"blocks.9.self_attn.norm_k.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1079 |
+
"blocks.9.self_attn.norm_q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1080 |
+
"blocks.9.self_attn.o.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1081 |
+
"blocks.9.self_attn.o.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1082 |
+
"blocks.9.self_attn.q.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1083 |
+
"blocks.9.self_attn.q.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1084 |
+
"blocks.9.self_attn.v.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1085 |
+
"blocks.9.self_attn.v.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1086 |
+
"head.head.bias": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 1087 |
+
"head.head.weight": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 1088 |
+
"head.modulation": "diffusion_pytorch_model-00003-of-00003.safetensors",
|
| 1089 |
+
"patch_embedding.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1090 |
+
"patch_embedding.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1091 |
+
"text_embedding.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1092 |
+
"text_embedding.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1093 |
+
"text_embedding.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1094 |
+
"text_embedding.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1095 |
+
"time_embedding.0.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1096 |
+
"time_embedding.0.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1097 |
+
"time_embedding.2.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1098 |
+
"time_embedding.2.weight": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1099 |
+
"time_projection.1.bias": "diffusion_pytorch_model-00001-of-00003.safetensors",
|
| 1100 |
+
"time_projection.1.weight": "diffusion_pytorch_model-00001-of-00003.safetensors"
|
| 1101 |
+
}
|
| 1102 |
+
}
|
transformer/model.py
ADDED
|
@@ -0,0 +1,1002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 7 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 8 |
+
from einops import repeat
|
| 9 |
+
|
| 10 |
+
from .attention import (
|
| 11 |
+
flash_attention,
|
| 12 |
+
sageattn_func,
|
| 13 |
+
_SAGEATTN_AVAILABLE,
|
| 14 |
+
_FLASH_ATTN_2_AVAILABLE,
|
| 15 |
+
_FLASH_ATTN_3_AVAILABLE,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
print("SAGEATTN_AVAILABLE:", _SAGEATTN_AVAILABLE)
|
| 19 |
+
|
| 20 |
+
__all__ = ["WanModel"]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def sinusoidal_embedding_1d(dim, position):
|
| 24 |
+
# preprocess
|
| 25 |
+
assert dim % 2 == 0
|
| 26 |
+
half = dim // 2
|
| 27 |
+
position = position.type(torch.float64)
|
| 28 |
+
|
| 29 |
+
# calculation
|
| 30 |
+
sinusoid = torch.outer(
|
| 31 |
+
position,
|
| 32 |
+
torch.pow(
|
| 33 |
+
10000,
|
| 34 |
+
-torch.arange(
|
| 35 |
+
half, device=torch.cuda.current_device(), dtype=torch.float64
|
| 36 |
+
).div(half),
|
| 37 |
+
),
|
| 38 |
+
)
|
| 39 |
+
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
|
| 40 |
+
return x
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# @amp.autocast(enabled=False)
|
| 44 |
+
def rope_params(max_seq_len, dim, theta=10000):
|
| 45 |
+
assert dim % 2 == 0
|
| 46 |
+
freqs = torch.outer(
|
| 47 |
+
torch.arange(max_seq_len),
|
| 48 |
+
1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim)),
|
| 49 |
+
)
|
| 50 |
+
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
| 51 |
+
return freqs
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# @amp.autocast(enabled=False)
|
| 55 |
+
def rope_apply(x, grid_sizes, freqs):
|
| 56 |
+
n, c = x.size(2), x.size(3) // 2
|
| 57 |
+
|
| 58 |
+
# split freqs
|
| 59 |
+
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
| 60 |
+
|
| 61 |
+
# loop over samples
|
| 62 |
+
output = []
|
| 63 |
+
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
| 64 |
+
seq_len = f * h * w
|
| 65 |
+
|
| 66 |
+
# precompute multipliers
|
| 67 |
+
x_i = torch.view_as_complex(
|
| 68 |
+
x[i, :seq_len].to(torch.float64).reshape(seq_len, n, -1, 2)
|
| 69 |
+
)
|
| 70 |
+
freqs_i = torch.cat(
|
| 71 |
+
[
|
| 72 |
+
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
| 73 |
+
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
| 74 |
+
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
|
| 75 |
+
],
|
| 76 |
+
dim=-1,
|
| 77 |
+
).reshape(seq_len, 1, -1)
|
| 78 |
+
|
| 79 |
+
# apply rotary embedding
|
| 80 |
+
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
|
| 81 |
+
x_i = torch.cat([x_i, x[i, seq_len:]])
|
| 82 |
+
|
| 83 |
+
# append to collection
|
| 84 |
+
output.append(x_i)
|
| 85 |
+
return torch.stack(output).type_as(x)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class WanRMSNorm(nn.Module):
|
| 89 |
+
def __init__(self, dim, eps=1e-5):
|
| 90 |
+
super().__init__()
|
| 91 |
+
self.dim = dim
|
| 92 |
+
self.eps = eps
|
| 93 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 94 |
+
|
| 95 |
+
def forward(self, x):
|
| 96 |
+
r"""
|
| 97 |
+
Args:
|
| 98 |
+
x(Tensor): Shape [B, L, C]
|
| 99 |
+
"""
|
| 100 |
+
return self._norm(x.float()).type_as(x) * self.weight
|
| 101 |
+
|
| 102 |
+
def _norm(self, x):
|
| 103 |
+
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class WanLayerNorm(nn.LayerNorm):
|
| 107 |
+
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
|
| 108 |
+
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
|
| 109 |
+
|
| 110 |
+
def forward(self, x):
|
| 111 |
+
r"""
|
| 112 |
+
Args:
|
| 113 |
+
x(Tensor): Shape [B, L, C]
|
| 114 |
+
"""
|
| 115 |
+
return super().forward(x).type_as(x)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class WanSelfAttention(nn.Module):
|
| 119 |
+
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6):
|
| 120 |
+
assert dim % num_heads == 0
|
| 121 |
+
super().__init__()
|
| 122 |
+
self.dim = dim
|
| 123 |
+
self.num_heads = num_heads
|
| 124 |
+
self.head_dim = dim // num_heads
|
| 125 |
+
self.window_size = window_size
|
| 126 |
+
self.qk_norm = qk_norm
|
| 127 |
+
self.eps = eps
|
| 128 |
+
|
| 129 |
+
# layers
|
| 130 |
+
self.q = nn.Linear(dim, dim)
|
| 131 |
+
self.k = nn.Linear(dim, dim)
|
| 132 |
+
self.v = nn.Linear(dim, dim)
|
| 133 |
+
self.o = nn.Linear(dim, dim)
|
| 134 |
+
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
| 135 |
+
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
| 136 |
+
|
| 137 |
+
def forward(self, x, seq_lens, grid_sizes, freqs):
|
| 138 |
+
r"""
|
| 139 |
+
Args:
|
| 140 |
+
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
| 141 |
+
seq_lens(Tensor): Shape [B]
|
| 142 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
| 143 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
| 144 |
+
"""
|
| 145 |
+
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
| 146 |
+
|
| 147 |
+
# query, key, value function
|
| 148 |
+
def qkv_fn(x):
|
| 149 |
+
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
| 150 |
+
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
| 151 |
+
v = self.v(x).view(b, s, n, d)
|
| 152 |
+
return q, k, v
|
| 153 |
+
|
| 154 |
+
q, k, v = qkv_fn(x)
|
| 155 |
+
|
| 156 |
+
if _SAGEATTN_AVAILABLE:
|
| 157 |
+
# print("Using sageattention in crossattn")
|
| 158 |
+
og_dtype = q.dtype
|
| 159 |
+
q = q.transpose(1, 2).to(dtype)
|
| 160 |
+
k = k.transpose(1, 2).to(dtype)
|
| 161 |
+
v = v.transpose(1, 2).to(dtype)
|
| 162 |
+
x = sageattn_func(
|
| 163 |
+
q=rope_apply(q, grid_sizes, freqs),
|
| 164 |
+
k=rope_apply(k, grid_sizes, freqs),
|
| 165 |
+
v=v,
|
| 166 |
+
)
|
| 167 |
+
x = x.transpose(1, 2).contiguous().to(og_dtype)
|
| 168 |
+
else:
|
| 169 |
+
x = flash_attention(
|
| 170 |
+
q=rope_apply(q, grid_sizes, freqs),
|
| 171 |
+
k=rope_apply(k, grid_sizes, freqs),
|
| 172 |
+
v=v,
|
| 173 |
+
k_lens=seq_lens,
|
| 174 |
+
window_size=self.window_size,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# output
|
| 178 |
+
x = x.flatten(2)
|
| 179 |
+
x = self.o(x)
|
| 180 |
+
return x
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class WanT2VCrossAttention(WanSelfAttention):
|
| 184 |
+
def forward(self, x, context, context_lens, crossattn_cache=None):
|
| 185 |
+
r"""
|
| 186 |
+
Args:
|
| 187 |
+
x(Tensor): Shape [B, L1, C]
|
| 188 |
+
context(Tensor): Shape [B, L2, C]
|
| 189 |
+
context_lens(Tensor): Shape [B]
|
| 190 |
+
crossattn_cache (List[dict], *optional*): Contains the cached key and value tensors for context embedding.
|
| 191 |
+
"""
|
| 192 |
+
b, n, d = x.size(0), self.num_heads, self.head_dim
|
| 193 |
+
|
| 194 |
+
# compute query, key, value
|
| 195 |
+
q = self.norm_q(self.q(x)).view(b, -1, n, d)
|
| 196 |
+
|
| 197 |
+
if crossattn_cache is not None:
|
| 198 |
+
if not crossattn_cache["is_init"]:
|
| 199 |
+
crossattn_cache["is_init"] = True
|
| 200 |
+
k = self.norm_k(self.k(context)).view(b, -1, n, d)
|
| 201 |
+
v = self.v(context).view(b, -1, n, d)
|
| 202 |
+
crossattn_cache["k"] = k
|
| 203 |
+
crossattn_cache["v"] = v
|
| 204 |
+
else:
|
| 205 |
+
k = crossattn_cache["k"]
|
| 206 |
+
v = crossattn_cache["v"]
|
| 207 |
+
else:
|
| 208 |
+
k = self.norm_k(self.k(context)).view(b, -1, n, d)
|
| 209 |
+
v = self.v(context).view(b, -1, n, d)
|
| 210 |
+
|
| 211 |
+
# compute attention
|
| 212 |
+
if _SAGEATTN_AVAILABLE:
|
| 213 |
+
# print("Using sageattention in crossattn")
|
| 214 |
+
dtype = torch.bfloat16
|
| 215 |
+
og_dtype = q.dtype
|
| 216 |
+
q = q.transpose(1, 2).to(dtype)
|
| 217 |
+
k = k.transpose(1, 2).to(dtype)
|
| 218 |
+
v = v.transpose(1, 2).to(dtype)
|
| 219 |
+
x = sageattn_func(
|
| 220 |
+
q=q,
|
| 221 |
+
k=k,
|
| 222 |
+
v=v,
|
| 223 |
+
)
|
| 224 |
+
x = x.transpose(1, 2).contiguous().to(og_dtype)
|
| 225 |
+
elif _FLASH_ATTN_2_AVAILABLE or _FLASH_ATTN_3_AVAILABLE:
|
| 226 |
+
x = flash_attention(q, k, v, k_lens=context_lens)
|
| 227 |
+
else:
|
| 228 |
+
dtype = torch.bfloat16
|
| 229 |
+
q = q.transpose(1, 2).to(dtype)
|
| 230 |
+
k = k.transpose(1, 2).to(dtype)
|
| 231 |
+
v = v.transpose(1, 2).to(dtype)
|
| 232 |
+
|
| 233 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
| 234 |
+
x = x.transpose(1, 2).contiguous()
|
| 235 |
+
|
| 236 |
+
# output
|
| 237 |
+
x = x.flatten(2)
|
| 238 |
+
x = self.o(x)
|
| 239 |
+
return x
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class WanGanCrossAttention(WanSelfAttention):
|
| 243 |
+
def forward(self, x, context, crossattn_cache=None):
|
| 244 |
+
r"""
|
| 245 |
+
Args:
|
| 246 |
+
x(Tensor): Shape [B, L1, C]
|
| 247 |
+
context(Tensor): Shape [B, L2, C]
|
| 248 |
+
context_lens(Tensor): Shape [B]
|
| 249 |
+
crossattn_cache (List[dict], *optional*): Contains the cached key and value tensors for context embedding.
|
| 250 |
+
"""
|
| 251 |
+
b, n, d = x.size(0), self.num_heads, self.head_dim
|
| 252 |
+
|
| 253 |
+
# compute query, key, value
|
| 254 |
+
qq = self.norm_q(self.q(context)).view(b, 1, -1, d)
|
| 255 |
+
|
| 256 |
+
kk = self.norm_k(self.k(x)).view(b, -1, n, d)
|
| 257 |
+
vv = self.v(x).view(b, -1, n, d)
|
| 258 |
+
|
| 259 |
+
# compute attention
|
| 260 |
+
x = flash_attention(qq, kk, vv)
|
| 261 |
+
|
| 262 |
+
# output
|
| 263 |
+
x = x.flatten(2)
|
| 264 |
+
x = self.o(x)
|
| 265 |
+
return x
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
class WanI2VCrossAttention(WanSelfAttention):
|
| 269 |
+
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6):
|
| 270 |
+
super().__init__(dim, num_heads, window_size, qk_norm, eps)
|
| 271 |
+
|
| 272 |
+
self.k_img = nn.Linear(dim, dim)
|
| 273 |
+
self.v_img = nn.Linear(dim, dim)
|
| 274 |
+
# self.alpha = nn.Parameter(torch.zeros((1, )))
|
| 275 |
+
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
| 276 |
+
|
| 277 |
+
def forward(self, x, context, context_lens):
|
| 278 |
+
r"""
|
| 279 |
+
Args:
|
| 280 |
+
x(Tensor): Shape [B, L1, C]
|
| 281 |
+
context(Tensor): Shape [B, L2, C]
|
| 282 |
+
context_lens(Tensor): Shape [B]
|
| 283 |
+
"""
|
| 284 |
+
context_img = context[:, :257]
|
| 285 |
+
context = context[:, 257:]
|
| 286 |
+
b, n, d = x.size(0), self.num_heads, self.head_dim
|
| 287 |
+
|
| 288 |
+
# compute query, key, value
|
| 289 |
+
q = self.norm_q(self.q(x)).view(b, -1, n, d)
|
| 290 |
+
k = self.norm_k(self.k(context)).view(b, -1, n, d)
|
| 291 |
+
v = self.v(context).view(b, -1, n, d)
|
| 292 |
+
k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d)
|
| 293 |
+
v_img = self.v_img(context_img).view(b, -1, n, d)
|
| 294 |
+
img_x = flash_attention(q, k_img, v_img, k_lens=None)
|
| 295 |
+
# compute attention
|
| 296 |
+
x = flash_attention(q, k, v, k_lens=context_lens)
|
| 297 |
+
|
| 298 |
+
# output
|
| 299 |
+
x = x.flatten(2)
|
| 300 |
+
img_x = img_x.flatten(2)
|
| 301 |
+
x = x + img_x
|
| 302 |
+
x = self.o(x)
|
| 303 |
+
return x
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
WAN_CROSSATTENTION_CLASSES = {
|
| 307 |
+
"t2v_cross_attn": WanT2VCrossAttention,
|
| 308 |
+
"i2v_cross_attn": WanI2VCrossAttention,
|
| 309 |
+
}
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
class WanAttentionBlock(nn.Module):
|
| 313 |
+
def __init__(
|
| 314 |
+
self,
|
| 315 |
+
cross_attn_type,
|
| 316 |
+
dim,
|
| 317 |
+
ffn_dim,
|
| 318 |
+
num_heads,
|
| 319 |
+
window_size=(-1, -1),
|
| 320 |
+
qk_norm=True,
|
| 321 |
+
cross_attn_norm=False,
|
| 322 |
+
eps=1e-6,
|
| 323 |
+
):
|
| 324 |
+
super().__init__()
|
| 325 |
+
self.dim = dim
|
| 326 |
+
self.ffn_dim = ffn_dim
|
| 327 |
+
self.num_heads = num_heads
|
| 328 |
+
self.window_size = window_size
|
| 329 |
+
self.qk_norm = qk_norm
|
| 330 |
+
self.cross_attn_norm = cross_attn_norm
|
| 331 |
+
self.eps = eps
|
| 332 |
+
|
| 333 |
+
# layers
|
| 334 |
+
self.norm1 = WanLayerNorm(dim, eps)
|
| 335 |
+
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps)
|
| 336 |
+
self.norm3 = (
|
| 337 |
+
WanLayerNorm(dim, eps, elementwise_affine=True)
|
| 338 |
+
if cross_attn_norm
|
| 339 |
+
else nn.Identity()
|
| 340 |
+
)
|
| 341 |
+
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](
|
| 342 |
+
dim, num_heads, (-1, -1), qk_norm, eps
|
| 343 |
+
)
|
| 344 |
+
self.norm2 = WanLayerNorm(dim, eps)
|
| 345 |
+
self.ffn = nn.Sequential(
|
| 346 |
+
nn.Linear(dim, ffn_dim),
|
| 347 |
+
nn.GELU(approximate="tanh"),
|
| 348 |
+
nn.Linear(ffn_dim, dim),
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
# modulation
|
| 352 |
+
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
| 353 |
+
|
| 354 |
+
def forward(
|
| 355 |
+
self,
|
| 356 |
+
x,
|
| 357 |
+
e,
|
| 358 |
+
seq_lens,
|
| 359 |
+
grid_sizes,
|
| 360 |
+
freqs,
|
| 361 |
+
context,
|
| 362 |
+
context_lens,
|
| 363 |
+
):
|
| 364 |
+
r"""
|
| 365 |
+
Args:
|
| 366 |
+
x(Tensor): Shape [B, L, C]
|
| 367 |
+
e(Tensor): Shape [B, 6, C]
|
| 368 |
+
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
| 369 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
| 370 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
| 371 |
+
"""
|
| 372 |
+
# assert e.dtype == torch.float32
|
| 373 |
+
# with amp.autocast(dtype=torch.float32):
|
| 374 |
+
e = (self.modulation + e).chunk(6, dim=1)
|
| 375 |
+
# assert e[0].dtype == torch.float32
|
| 376 |
+
|
| 377 |
+
# self-attention
|
| 378 |
+
y = self.self_attn(
|
| 379 |
+
self.norm1(x) * (1 + e[1]) + e[0], seq_lens, grid_sizes, freqs
|
| 380 |
+
)
|
| 381 |
+
# with amp.autocast(dtype=torch.float32):
|
| 382 |
+
x = x + y * e[2]
|
| 383 |
+
|
| 384 |
+
# cross-attention & ffn function
|
| 385 |
+
def cross_attn_ffn(x, context, context_lens, e):
|
| 386 |
+
x = x + self.cross_attn(self.norm3(x), context, context_lens)
|
| 387 |
+
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
|
| 388 |
+
# with amp.autocast(dtype=torch.float32):
|
| 389 |
+
x = x + y * e[5]
|
| 390 |
+
return x
|
| 391 |
+
|
| 392 |
+
x = cross_attn_ffn(x, context, context_lens, e)
|
| 393 |
+
return x
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
class GanAttentionBlock(nn.Module):
|
| 397 |
+
def __init__(
|
| 398 |
+
self,
|
| 399 |
+
dim=1536,
|
| 400 |
+
ffn_dim=8192,
|
| 401 |
+
num_heads=12,
|
| 402 |
+
window_size=(-1, -1),
|
| 403 |
+
qk_norm=True,
|
| 404 |
+
cross_attn_norm=True,
|
| 405 |
+
eps=1e-6,
|
| 406 |
+
):
|
| 407 |
+
super().__init__()
|
| 408 |
+
self.dim = dim
|
| 409 |
+
self.ffn_dim = ffn_dim
|
| 410 |
+
self.num_heads = num_heads
|
| 411 |
+
self.window_size = window_size
|
| 412 |
+
self.qk_norm = qk_norm
|
| 413 |
+
self.cross_attn_norm = cross_attn_norm
|
| 414 |
+
self.eps = eps
|
| 415 |
+
|
| 416 |
+
# layers
|
| 417 |
+
# self.norm1 = WanLayerNorm(dim, eps)
|
| 418 |
+
# self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
|
| 419 |
+
# eps)
|
| 420 |
+
self.norm3 = (
|
| 421 |
+
WanLayerNorm(dim, eps, elementwise_affine=True)
|
| 422 |
+
if cross_attn_norm
|
| 423 |
+
else nn.Identity()
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
self.norm2 = WanLayerNorm(dim, eps)
|
| 427 |
+
self.ffn = nn.Sequential(
|
| 428 |
+
nn.Linear(dim, ffn_dim),
|
| 429 |
+
nn.GELU(approximate="tanh"),
|
| 430 |
+
nn.Linear(ffn_dim, dim),
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
self.cross_attn = WanGanCrossAttention(dim, num_heads, (-1, -1), qk_norm, eps)
|
| 434 |
+
|
| 435 |
+
# modulation
|
| 436 |
+
# self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
| 437 |
+
|
| 438 |
+
def forward(
|
| 439 |
+
self,
|
| 440 |
+
x,
|
| 441 |
+
context,
|
| 442 |
+
# seq_lens,
|
| 443 |
+
# grid_sizes,
|
| 444 |
+
# freqs,
|
| 445 |
+
# context,
|
| 446 |
+
# context_lens,
|
| 447 |
+
):
|
| 448 |
+
r"""
|
| 449 |
+
Args:
|
| 450 |
+
x(Tensor): Shape [B, L, C]
|
| 451 |
+
e(Tensor): Shape [B, 6, C]
|
| 452 |
+
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
| 453 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
| 454 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
| 455 |
+
"""
|
| 456 |
+
# assert e.dtype == torch.float32
|
| 457 |
+
# with amp.autocast(dtype=torch.float32):
|
| 458 |
+
# e = (self.modulation + e).chunk(6, dim=1)
|
| 459 |
+
# assert e[0].dtype == torch.float32
|
| 460 |
+
|
| 461 |
+
# # self-attention
|
| 462 |
+
# y = self.self_attn(
|
| 463 |
+
# self.norm1(x) * (1 + e[1]) + e[0], seq_lens, grid_sizes,
|
| 464 |
+
# freqs)
|
| 465 |
+
# # with amp.autocast(dtype=torch.float32):
|
| 466 |
+
# x = x + y * e[2]
|
| 467 |
+
|
| 468 |
+
# cross-attention & ffn function
|
| 469 |
+
def cross_attn_ffn(x, context):
|
| 470 |
+
token = context + self.cross_attn(self.norm3(x), context)
|
| 471 |
+
y = self.ffn(self.norm2(token)) + token # * (1 + e[4]) + e[3])
|
| 472 |
+
# with amp.autocast(dtype=torch.float32):
|
| 473 |
+
# x = x + y * e[5]
|
| 474 |
+
return y
|
| 475 |
+
|
| 476 |
+
x = cross_attn_ffn(x, context)
|
| 477 |
+
return x
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
class Head(nn.Module):
|
| 481 |
+
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
|
| 482 |
+
super().__init__()
|
| 483 |
+
self.dim = dim
|
| 484 |
+
self.out_dim = out_dim
|
| 485 |
+
self.patch_size = patch_size
|
| 486 |
+
self.eps = eps
|
| 487 |
+
|
| 488 |
+
# layers
|
| 489 |
+
out_dim = math.prod(patch_size) * out_dim
|
| 490 |
+
self.norm = WanLayerNorm(dim, eps)
|
| 491 |
+
self.head = nn.Linear(dim, out_dim)
|
| 492 |
+
|
| 493 |
+
# modulation
|
| 494 |
+
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
| 495 |
+
|
| 496 |
+
def forward(self, x, e):
|
| 497 |
+
r"""
|
| 498 |
+
Args:
|
| 499 |
+
x(Tensor): Shape [B, L1, C]
|
| 500 |
+
e(Tensor): Shape [B, C]
|
| 501 |
+
"""
|
| 502 |
+
# assert e.dtype == torch.float32
|
| 503 |
+
# with amp.autocast(dtype=torch.float32):
|
| 504 |
+
e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
|
| 505 |
+
x = self.head(self.norm(x) * (1 + e[1]) + e[0])
|
| 506 |
+
return x
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
class MLPProj(torch.nn.Module):
|
| 510 |
+
def __init__(self, in_dim, out_dim):
|
| 511 |
+
super().__init__()
|
| 512 |
+
|
| 513 |
+
self.proj = torch.nn.Sequential(
|
| 514 |
+
torch.nn.LayerNorm(in_dim),
|
| 515 |
+
torch.nn.Linear(in_dim, in_dim),
|
| 516 |
+
torch.nn.GELU(),
|
| 517 |
+
torch.nn.Linear(in_dim, out_dim),
|
| 518 |
+
torch.nn.LayerNorm(out_dim),
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
def forward(self, image_embeds):
|
| 522 |
+
clip_extra_context_tokens = self.proj(image_embeds)
|
| 523 |
+
return clip_extra_context_tokens
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
class RegisterTokens(nn.Module):
|
| 527 |
+
def __init__(self, num_registers: int, dim: int):
|
| 528 |
+
super().__init__()
|
| 529 |
+
self.register_tokens = nn.Parameter(torch.randn(num_registers, dim) * 0.02)
|
| 530 |
+
self.rms_norm = WanRMSNorm(dim, eps=1e-6)
|
| 531 |
+
|
| 532 |
+
def forward(self):
|
| 533 |
+
return self.rms_norm(self.register_tokens)
|
| 534 |
+
|
| 535 |
+
def reset_parameters(self):
|
| 536 |
+
nn.init.normal_(self.register_tokens, std=0.02)
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
class WanModel(ModelMixin, ConfigMixin):
|
| 540 |
+
r"""
|
| 541 |
+
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
| 542 |
+
"""
|
| 543 |
+
|
| 544 |
+
ignore_for_config = [
|
| 545 |
+
"patch_size",
|
| 546 |
+
"cross_attn_norm",
|
| 547 |
+
"qk_norm",
|
| 548 |
+
"text_dim",
|
| 549 |
+
"window_size",
|
| 550 |
+
]
|
| 551 |
+
_no_split_modules = ["WanAttentionBlock"]
|
| 552 |
+
_supports_gradient_checkpointing = True
|
| 553 |
+
|
| 554 |
+
@register_to_config
|
| 555 |
+
def __init__(
|
| 556 |
+
self,
|
| 557 |
+
model_type="t2v",
|
| 558 |
+
patch_size=(1, 2, 2),
|
| 559 |
+
text_len=512,
|
| 560 |
+
in_dim=16,
|
| 561 |
+
dim=2048,
|
| 562 |
+
ffn_dim=8192,
|
| 563 |
+
freq_dim=256,
|
| 564 |
+
text_dim=4096,
|
| 565 |
+
out_dim=16,
|
| 566 |
+
num_heads=16,
|
| 567 |
+
num_layers=32,
|
| 568 |
+
window_size=(-1, -1),
|
| 569 |
+
qk_norm=True,
|
| 570 |
+
cross_attn_norm=True,
|
| 571 |
+
eps=1e-6,
|
| 572 |
+
):
|
| 573 |
+
r"""
|
| 574 |
+
Initialize the diffusion model backbone.
|
| 575 |
+
|
| 576 |
+
Args:
|
| 577 |
+
model_type (`str`, *optional*, defaults to 't2v'):
|
| 578 |
+
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
|
| 579 |
+
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
|
| 580 |
+
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
|
| 581 |
+
text_len (`int`, *optional*, defaults to 512):
|
| 582 |
+
Fixed length for text embeddings
|
| 583 |
+
in_dim (`int`, *optional*, defaults to 16):
|
| 584 |
+
Input video channels (C_in)
|
| 585 |
+
dim (`int`, *optional*, defaults to 2048):
|
| 586 |
+
Hidden dimension of the transformer
|
| 587 |
+
ffn_dim (`int`, *optional*, defaults to 8192):
|
| 588 |
+
Intermediate dimension in feed-forward network
|
| 589 |
+
freq_dim (`int`, *optional*, defaults to 256):
|
| 590 |
+
Dimension for sinusoidal time embeddings
|
| 591 |
+
text_dim (`int`, *optional*, defaults to 4096):
|
| 592 |
+
Input dimension for text embeddings
|
| 593 |
+
out_dim (`int`, *optional*, defaults to 16):
|
| 594 |
+
Output video channels (C_out)
|
| 595 |
+
num_heads (`int`, *optional*, defaults to 16):
|
| 596 |
+
Number of attention heads
|
| 597 |
+
num_layers (`int`, *optional*, defaults to 32):
|
| 598 |
+
Number of transformer blocks
|
| 599 |
+
window_size (`tuple`, *optional*, defaults to (-1, -1)):
|
| 600 |
+
Window size for local attention (-1 indicates global attention)
|
| 601 |
+
qk_norm (`bool`, *optional*, defaults to True):
|
| 602 |
+
Enable query/key normalization
|
| 603 |
+
cross_attn_norm (`bool`, *optional*, defaults to False):
|
| 604 |
+
Enable cross-attention normalization
|
| 605 |
+
eps (`float`, *optional*, defaults to 1e-6):
|
| 606 |
+
Epsilon value for normalization layers
|
| 607 |
+
"""
|
| 608 |
+
|
| 609 |
+
super().__init__()
|
| 610 |
+
|
| 611 |
+
assert model_type in ["t2v", "i2v"]
|
| 612 |
+
self.model_type = model_type
|
| 613 |
+
|
| 614 |
+
self.patch_size = patch_size
|
| 615 |
+
self.text_len = text_len
|
| 616 |
+
self.in_dim = in_dim
|
| 617 |
+
self.dim = dim
|
| 618 |
+
self.ffn_dim = ffn_dim
|
| 619 |
+
self.freq_dim = freq_dim
|
| 620 |
+
self.text_dim = text_dim
|
| 621 |
+
self.out_dim = out_dim
|
| 622 |
+
self.num_heads = num_heads
|
| 623 |
+
self.num_layers = num_layers
|
| 624 |
+
self.window_size = window_size
|
| 625 |
+
self.qk_norm = qk_norm
|
| 626 |
+
self.cross_attn_norm = cross_attn_norm
|
| 627 |
+
self.eps = eps
|
| 628 |
+
self.local_attn_size = 21
|
| 629 |
+
|
| 630 |
+
# embeddings
|
| 631 |
+
self.patch_embedding = nn.Conv3d(
|
| 632 |
+
in_dim, dim, kernel_size=patch_size, stride=patch_size
|
| 633 |
+
)
|
| 634 |
+
self.text_embedding = nn.Sequential(
|
| 635 |
+
nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim)
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
self.time_embedding = nn.Sequential(
|
| 639 |
+
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)
|
| 640 |
+
)
|
| 641 |
+
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
|
| 642 |
+
|
| 643 |
+
# blocks
|
| 644 |
+
cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn"
|
| 645 |
+
self.blocks = nn.ModuleList(
|
| 646 |
+
[
|
| 647 |
+
WanAttentionBlock(
|
| 648 |
+
cross_attn_type,
|
| 649 |
+
dim,
|
| 650 |
+
ffn_dim,
|
| 651 |
+
num_heads,
|
| 652 |
+
window_size,
|
| 653 |
+
qk_norm,
|
| 654 |
+
cross_attn_norm,
|
| 655 |
+
eps,
|
| 656 |
+
)
|
| 657 |
+
for _ in range(num_layers)
|
| 658 |
+
]
|
| 659 |
+
)
|
| 660 |
+
|
| 661 |
+
# head
|
| 662 |
+
self.head = Head(dim, out_dim, patch_size, eps)
|
| 663 |
+
|
| 664 |
+
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
| 665 |
+
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
| 666 |
+
d = dim // num_heads
|
| 667 |
+
self.freqs = torch.cat(
|
| 668 |
+
[
|
| 669 |
+
# rope_params(1024, d - 4 * (d // 6)),
|
| 670 |
+
rope_params_riflex(
|
| 671 |
+
1024,
|
| 672 |
+
d - 4 * (d // 6),
|
| 673 |
+
),
|
| 674 |
+
rope_params(1024, 2 * (d // 6)),
|
| 675 |
+
rope_params(1024, 2 * (d // 6)),
|
| 676 |
+
],
|
| 677 |
+
dim=1,
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
if model_type == "i2v":
|
| 681 |
+
self.img_emb = MLPProj(1280, dim)
|
| 682 |
+
|
| 683 |
+
# initialize weights
|
| 684 |
+
self.init_weights()
|
| 685 |
+
|
| 686 |
+
self.gradient_checkpointing = False
|
| 687 |
+
|
| 688 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 689 |
+
self.gradient_checkpointing = value
|
| 690 |
+
|
| 691 |
+
def forward(self, *args, **kwargs):
|
| 692 |
+
# if kwargs.get('classify_mode', False) is True:
|
| 693 |
+
# kwargs.pop('classify_mode')
|
| 694 |
+
# return self._forward_classify(*args, **kwargs)
|
| 695 |
+
# else:
|
| 696 |
+
return self._forward(*args, **kwargs)
|
| 697 |
+
|
| 698 |
+
def _forward(
|
| 699 |
+
self,
|
| 700 |
+
x,
|
| 701 |
+
t,
|
| 702 |
+
context,
|
| 703 |
+
seq_len,
|
| 704 |
+
classify_mode=False,
|
| 705 |
+
concat_time_embeddings=False,
|
| 706 |
+
register_tokens=None,
|
| 707 |
+
cls_pred_branch=None,
|
| 708 |
+
gan_ca_blocks=None,
|
| 709 |
+
clip_fea=None,
|
| 710 |
+
y=None,
|
| 711 |
+
):
|
| 712 |
+
r"""
|
| 713 |
+
Forward pass through the diffusion model
|
| 714 |
+
|
| 715 |
+
Args:
|
| 716 |
+
x (List[Tensor]):
|
| 717 |
+
List of input video tensors, each with shape [C_in, F, H, W]
|
| 718 |
+
t (Tensor):
|
| 719 |
+
Diffusion timesteps tensor of shape [B]
|
| 720 |
+
context (List[Tensor]):
|
| 721 |
+
List of text embeddings each with shape [L, C]
|
| 722 |
+
seq_len (`int`):
|
| 723 |
+
Maximum sequence length for positional encoding
|
| 724 |
+
clip_fea (Tensor, *optional*):
|
| 725 |
+
CLIP image features for image-to-video mode
|
| 726 |
+
y (List[Tensor], *optional*):
|
| 727 |
+
Conditional video inputs for image-to-video mode, same shape as x
|
| 728 |
+
|
| 729 |
+
Returns:
|
| 730 |
+
List[Tensor]:
|
| 731 |
+
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
| 732 |
+
"""
|
| 733 |
+
if self.model_type == "i2v":
|
| 734 |
+
assert clip_fea is not None and y is not None
|
| 735 |
+
# params
|
| 736 |
+
device = self.patch_embedding.weight.device
|
| 737 |
+
if self.freqs.device != device:
|
| 738 |
+
self.freqs = self.freqs.to(device)
|
| 739 |
+
|
| 740 |
+
if y is not None:
|
| 741 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
| 742 |
+
|
| 743 |
+
# embeddings
|
| 744 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
| 745 |
+
grid_sizes = torch.stack(
|
| 746 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]
|
| 747 |
+
)
|
| 748 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
| 749 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
| 750 |
+
assert seq_lens.max() <= seq_len
|
| 751 |
+
x = torch.cat(
|
| 752 |
+
[
|
| 753 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
|
| 754 |
+
for u in x
|
| 755 |
+
]
|
| 756 |
+
)
|
| 757 |
+
|
| 758 |
+
# time embeddings
|
| 759 |
+
# with amp.autocast(dtype=torch.float32):
|
| 760 |
+
e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t).type_as(x))
|
| 761 |
+
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
| 762 |
+
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
| 763 |
+
|
| 764 |
+
# context
|
| 765 |
+
context_lens = None
|
| 766 |
+
context = self.text_embedding(
|
| 767 |
+
torch.stack(
|
| 768 |
+
[
|
| 769 |
+
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
| 770 |
+
for u in context
|
| 771 |
+
]
|
| 772 |
+
)
|
| 773 |
+
)
|
| 774 |
+
|
| 775 |
+
if clip_fea is not None:
|
| 776 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
| 777 |
+
context = torch.concat([context_clip, context], dim=1)
|
| 778 |
+
|
| 779 |
+
# arguments
|
| 780 |
+
kwargs = dict(
|
| 781 |
+
e=e0,
|
| 782 |
+
seq_lens=seq_lens,
|
| 783 |
+
grid_sizes=grid_sizes,
|
| 784 |
+
freqs=self.freqs,
|
| 785 |
+
context=context,
|
| 786 |
+
context_lens=context_lens,
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
def create_custom_forward(module):
|
| 790 |
+
def custom_forward(*inputs, **kwargs):
|
| 791 |
+
return module(*inputs, **kwargs)
|
| 792 |
+
|
| 793 |
+
return custom_forward
|
| 794 |
+
|
| 795 |
+
# TODO: Tune the number of blocks for feature extraction
|
| 796 |
+
final_x = None
|
| 797 |
+
if classify_mode:
|
| 798 |
+
assert register_tokens is not None
|
| 799 |
+
assert gan_ca_blocks is not None
|
| 800 |
+
assert cls_pred_branch is not None
|
| 801 |
+
|
| 802 |
+
final_x = []
|
| 803 |
+
registers = repeat(register_tokens(), "n d -> b n d", b=x.shape[0])
|
| 804 |
+
# x = torch.cat([registers, x], dim=1)
|
| 805 |
+
|
| 806 |
+
gan_idx = 0
|
| 807 |
+
for ii, block in enumerate(self.blocks):
|
| 808 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 809 |
+
x = torch.utils.checkpoint.checkpoint(
|
| 810 |
+
create_custom_forward(block),
|
| 811 |
+
x,
|
| 812 |
+
**kwargs,
|
| 813 |
+
use_reentrant=False,
|
| 814 |
+
)
|
| 815 |
+
else:
|
| 816 |
+
x = block(x, **kwargs)
|
| 817 |
+
|
| 818 |
+
if classify_mode and ii in [13, 21, 29]:
|
| 819 |
+
gan_token = registers[:, gan_idx : gan_idx + 1]
|
| 820 |
+
final_x.append(gan_ca_blocks[gan_idx](x, gan_token))
|
| 821 |
+
gan_idx += 1
|
| 822 |
+
|
| 823 |
+
if classify_mode:
|
| 824 |
+
final_x = torch.cat(final_x, dim=1)
|
| 825 |
+
if concat_time_embeddings:
|
| 826 |
+
final_x = cls_pred_branch(
|
| 827 |
+
torch.cat([final_x, 10 * e[:, None, :]], dim=1).view(
|
| 828 |
+
final_x.shape[0], -1
|
| 829 |
+
)
|
| 830 |
+
)
|
| 831 |
+
else:
|
| 832 |
+
final_x = cls_pred_branch(final_x.view(final_x.shape[0], -1))
|
| 833 |
+
|
| 834 |
+
# head
|
| 835 |
+
x = self.head(x, e)
|
| 836 |
+
|
| 837 |
+
# unpatchify
|
| 838 |
+
x = self.unpatchify(x, grid_sizes)
|
| 839 |
+
|
| 840 |
+
if classify_mode:
|
| 841 |
+
return torch.stack(x), final_x
|
| 842 |
+
|
| 843 |
+
return torch.stack(x)
|
| 844 |
+
|
| 845 |
+
def _forward_classify(
|
| 846 |
+
self,
|
| 847 |
+
x,
|
| 848 |
+
t,
|
| 849 |
+
context,
|
| 850 |
+
seq_len,
|
| 851 |
+
register_tokens,
|
| 852 |
+
cls_pred_branch,
|
| 853 |
+
clip_fea=None,
|
| 854 |
+
y=None,
|
| 855 |
+
):
|
| 856 |
+
r"""
|
| 857 |
+
Feature extraction through the diffusion model
|
| 858 |
+
|
| 859 |
+
Args:
|
| 860 |
+
x (List[Tensor]):
|
| 861 |
+
List of input video tensors, each with shape [C_in, F, H, W]
|
| 862 |
+
t (Tensor):
|
| 863 |
+
Diffusion timesteps tensor of shape [B]
|
| 864 |
+
context (List[Tensor]):
|
| 865 |
+
List of text embeddings each with shape [L, C]
|
| 866 |
+
seq_len (`int`):
|
| 867 |
+
Maximum sequence length for positional encoding
|
| 868 |
+
clip_fea (Tensor, *optional*):
|
| 869 |
+
CLIP image features for image-to-video mode
|
| 870 |
+
y (List[Tensor], *optional*):
|
| 871 |
+
Conditional video inputs for image-to-video mode, same shape as x
|
| 872 |
+
|
| 873 |
+
Returns:
|
| 874 |
+
List[Tensor]:
|
| 875 |
+
List of video features with original input shapes [C_block, F, H / 8, W / 8]
|
| 876 |
+
"""
|
| 877 |
+
if self.model_type == "i2v":
|
| 878 |
+
assert clip_fea is not None and y is not None
|
| 879 |
+
# params
|
| 880 |
+
device = self.patch_embedding.weight.device
|
| 881 |
+
if self.freqs.device != device:
|
| 882 |
+
self.freqs = self.freqs.to(device)
|
| 883 |
+
|
| 884 |
+
if y is not None:
|
| 885 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
| 886 |
+
|
| 887 |
+
# embeddings
|
| 888 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
| 889 |
+
grid_sizes = torch.stack(
|
| 890 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]
|
| 891 |
+
)
|
| 892 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
| 893 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
| 894 |
+
assert seq_lens.max() <= seq_len
|
| 895 |
+
x = torch.cat(
|
| 896 |
+
[
|
| 897 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
|
| 898 |
+
for u in x
|
| 899 |
+
]
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
# time embeddings
|
| 903 |
+
# with amp.autocast(dtype=torch.float32):
|
| 904 |
+
e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t).type_as(x))
|
| 905 |
+
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
| 906 |
+
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
| 907 |
+
|
| 908 |
+
# context
|
| 909 |
+
context_lens = None
|
| 910 |
+
context = self.text_embedding(
|
| 911 |
+
torch.stack(
|
| 912 |
+
[
|
| 913 |
+
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
| 914 |
+
for u in context
|
| 915 |
+
]
|
| 916 |
+
)
|
| 917 |
+
)
|
| 918 |
+
|
| 919 |
+
if clip_fea is not None:
|
| 920 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
| 921 |
+
context = torch.concat([context_clip, context], dim=1)
|
| 922 |
+
|
| 923 |
+
# arguments
|
| 924 |
+
kwargs = dict(
|
| 925 |
+
e=e0,
|
| 926 |
+
seq_lens=seq_lens,
|
| 927 |
+
grid_sizes=grid_sizes,
|
| 928 |
+
freqs=self.freqs,
|
| 929 |
+
context=context,
|
| 930 |
+
context_lens=context_lens,
|
| 931 |
+
)
|
| 932 |
+
|
| 933 |
+
def create_custom_forward(module):
|
| 934 |
+
def custom_forward(*inputs, **kwargs):
|
| 935 |
+
return module(*inputs, **kwargs)
|
| 936 |
+
|
| 937 |
+
return custom_forward
|
| 938 |
+
|
| 939 |
+
# TODO: Tune the number of blocks for feature extraction
|
| 940 |
+
for block in self.blocks[:16]:
|
| 941 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 942 |
+
x = torch.utils.checkpoint.checkpoint(
|
| 943 |
+
create_custom_forward(block),
|
| 944 |
+
x,
|
| 945 |
+
**kwargs,
|
| 946 |
+
use_reentrant=False,
|
| 947 |
+
)
|
| 948 |
+
else:
|
| 949 |
+
x = block(x, **kwargs)
|
| 950 |
+
|
| 951 |
+
# unpatchify
|
| 952 |
+
x = self.unpatchify(x, grid_sizes, c=self.dim // 4)
|
| 953 |
+
return torch.stack(x)
|
| 954 |
+
|
| 955 |
+
def unpatchify(self, x, grid_sizes, c=None):
|
| 956 |
+
r"""
|
| 957 |
+
Reconstruct video tensors from patch embeddings.
|
| 958 |
+
|
| 959 |
+
Args:
|
| 960 |
+
x (List[Tensor]):
|
| 961 |
+
List of patchified features, each with shape [L, C_out * prod(patch_size)]
|
| 962 |
+
grid_sizes (Tensor):
|
| 963 |
+
Original spatial-temporal grid dimensions before patching,
|
| 964 |
+
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
|
| 965 |
+
|
| 966 |
+
Returns:
|
| 967 |
+
List[Tensor]:
|
| 968 |
+
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
|
| 969 |
+
"""
|
| 970 |
+
|
| 971 |
+
c = self.out_dim if c is None else c
|
| 972 |
+
out = []
|
| 973 |
+
for u, v in zip(x, grid_sizes.tolist()):
|
| 974 |
+
u = u[: math.prod(v)].view(*v, *self.patch_size, c)
|
| 975 |
+
u = torch.einsum("fhwpqrc->cfphqwr", u)
|
| 976 |
+
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
|
| 977 |
+
out.append(u)
|
| 978 |
+
return out
|
| 979 |
+
|
| 980 |
+
def init_weights(self):
|
| 981 |
+
r"""
|
| 982 |
+
Initialize model parameters using Xavier initialization.
|
| 983 |
+
"""
|
| 984 |
+
|
| 985 |
+
# basic init
|
| 986 |
+
for m in self.modules():
|
| 987 |
+
if isinstance(m, nn.Linear):
|
| 988 |
+
nn.init.xavier_uniform_(m.weight)
|
| 989 |
+
if m.bias is not None:
|
| 990 |
+
nn.init.zeros_(m.bias)
|
| 991 |
+
|
| 992 |
+
# init embeddings
|
| 993 |
+
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
|
| 994 |
+
for m in self.text_embedding.modules():
|
| 995 |
+
if isinstance(m, nn.Linear):
|
| 996 |
+
nn.init.normal_(m.weight, std=0.02)
|
| 997 |
+
for m in self.time_embedding.modules():
|
| 998 |
+
if isinstance(m, nn.Linear):
|
| 999 |
+
nn.init.normal_(m.weight, std=0.02)
|
| 1000 |
+
|
| 1001 |
+
# init output layer
|
| 1002 |
+
nn.init.zeros_(self.head.head.weight)
|