File size: 58,281 Bytes
b978d15 b5a4dcb b978d15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 |
from functools import partial
from typing import Any, Dict, Literal, Optional, Tuple, Union
import torch
from tqdm.auto import tqdm
from transformers import (
GenerationConfig,
LogitsProcessorList,
PreTrainedTokenizer,
StoppingCriteriaList,
)
from transformers.cache_utils import Cache, DynamicCache
try:
from torch.nn.attention.flex_attention import (
BlockMask,
and_masks,
create_block_mask,
)
except ImportError:
BlockMask, and_masks, create_block_mask = None, None, None
from .denoiser_base import (
Denoiser,
DenoiserConfig,
DenoiserInput,
LossAndNllOutput,
)
def create_attn_mask(attn_mask):
# noinspection PyUnusedLocal
def padding(b, h, q_idx, kv_idx):
return attn_mask[b, q_idx] & attn_mask[b, kv_idx]
return padding
class DiffusionGenerationConfig(GenerationConfig):
def __init__(
self,
num_steps: int = 1000,
min_t: float = 1e-5,
block_size: Optional[int] = None,
first_hitting: bool = False,
sampling_strategy: Literal["posterior", "predict_then_noise"] = "posterior",
confidence_based_noising: bool = False,
confidence_margin_based_noising: bool = False,
confidence_threshold: float = 1e6,
use_model_output_cache: bool = True,
align_inputs_to_blocks: bool = True,
**kwargs,
):
"""Generation config with additional parameters relevant for diffusion model
sampling.
Args:
num_steps (int): Number of diffusion / iterative refinement steps.
Defaults to 1000.
min_t (float): Minimum time to use.
Diffusion models use t=1 for noise and t=0 for signal.
Setting t=0 exactly can lead to certain numerical instabilities.
Defaults to 1e-5.
block_size (int): Block size to use for semi-autoregressive decoding.
Defaults to None (in which case block_size is set to max_new_tokens).
first_hitting (bool): Whether to use first hitting sampler.
When set to true, rather than following the diffusion time and sampling
from posterior, which can result in no tokens changing between steps,
e.g., for masked diffusion, we explicitly determine the next time step
at which a token will be decoded / generated.
Note: this will negate the `num_steps` parameter, as we will decode one
token at a time, hence, when True, num_steps = seq_length
(or block_size, for semi-autoregressive).
See https://arxiv.org/abs/2409.02908 for details.
Defaults to False.
sampling_strategy (str): Method for transitioning between latents.
Options:
- "posterior" - Compute and sample from the posterior
q(x_s | x_t, x_theta).
- "predict_then_noise" - Sample from the denoising model x_theta,
then add back noise to produce x_s.
Only implemented for absorbing diffusion.
Defaults to "posterior".
confidence_based_noising (bool): When using the "predict_then_noise"
strategy, whether to add noise to random positions or to those that have
the lowest probability under x_theta.
Cannot be used in conjunction with confidence_margin_based_noising.
Defaults to False.
confidence_margin_based_noising (bool): When using the "predict_then_noise"
strategy, whether to add noise to random positions or to those that have
the lowest probability margins under x_theta, where margin is defined as
the absolute difference between the top two probabilities at a given
position.
See https://arxiv.org/abs/2502.06768 for details.
Cannot be used in conjunction with confidence_based_noising.
Defaults to False.
confidence_threshold (float): Confidence threshold to use for sampling.
Any tokens that exceed threshold are decoded.
See https://arxiv.org/abs/2505.22618 for details.
Defaults to 1e6.
use_model_output_cache (bool): Whether to re-use model's output, if sequence
is unchanged, because if xt == xs, we can simply re-use the denoising
model's outputs and save a function evaluation.
Relevant if model.backbone is not time/noise-conditioned.
Defaults to True.
align_inputs_to_blocks (bool): Whether to align input tokens to block size,
e.g., for an input of length C and block size S, context will be C // S,
and generation will begin with a block whose first C % S tokens come
from the input.
kwargs: Keyword arguments passed to `GenerationConfig`.
"""
super().__init__(**kwargs)
self.num_steps = num_steps
self.min_t = min_t
# TODO: assumes we are setting max_new_tokens, which may not be the case!
self.block_size = block_size if block_size is not None else self.max_new_tokens
self.first_hitting = first_hitting
if self.first_hitting:
# TODO: log.warn that this is being overridden
self.num_steps = min(num_steps, self.block_size)
self.sampling_strategy = sampling_strategy
assert not confidence_based_noising or not confidence_margin_based_noising, (
"Cannot use both `confidence_based_noising` and"
" `confidence_margin_based_noising`."
)
self.confidence_based_noising = confidence_based_noising
self.confidence_margin_based_noising = confidence_margin_based_noising
self.confidence_threshold = confidence_threshold
self.use_model_output_cache = use_model_output_cache
self.align_inputs_to_blocks = align_inputs_to_blocks
class D3PMConfig(DenoiserConfig):
"""Configuration class for D3PM models."""
model_type = "d3pm"
auto_map = {
"AutoConfig": "diffusion.D3PMConfig",
"AutoModel": "diffusion.D3PM",
"AutoModelForMaskedLM": "diffusion.D3PM",
}
def __init__(
self,
keep_clean_bos: Optional[bool] = None, # Whether to enforce un-noised BOS token
T: int = 1000,
diffusion_type: Literal["absorbing", "uniform"] = "absorbing",
**kwargs,
):
super().__init__(**kwargs)
self.keep_clean_bos = keep_clean_bos
self.diffusion_type = diffusion_type
self.T = T
class D3PM(Denoiser):
"""Denoiser class for D3PM models.
This class implements the Denoiser interface for D3PM models.
"""
config_class = D3PMConfig
def __init__(self, config: D3PMConfig, **kwargs):
super().__init__(config, **kwargs)
self.T = config.T
self.diffusion_type = config.diffusion_type
self._create_static_mask()
def _create_static_mask(self) -> None:
static_mask = torch.ones(
self.config.length, self.config.length, dtype=torch.bool
)
self.register_buffer(
"static_attention_mask",
static_mask,
)
self.skip_params_for_push.append("static_attention_mask")
def _sample_q_xt(
self,
x0: torch.LongTensor,
alpha_t: torch.FloatTensor,
context_mask: torch.FloatTensor,
) -> torch.LongTensor:
"""Sample from the pre-defined forward / noising process.
Parameters:
x0 (Tensor): Signal / data sample;
can potentially include context tokens.
alpha_t (Tensor): Amount of signal to retain.
context_mask (Tensor): Indicator of context tokens (to remain
unchanged).
"""
move_indices = torch.rand(*x0.shape, device=x0.device) < (1.0 - alpha_t)
if self.diffusion_type == "absorbing":
xt = torch.where(
(move_indices * (1 - context_mask)).bool(), self.mask_token_id, x0
)
if self.config.keep_clean_bos:
xt[..., 0] = x0[..., 0]
return xt # type: ignore
if self.diffusion_type == "uniform":
xt = torch.randint(0, self.vocab_size, x0.shape, device=x0.device)
xt = torch.where(context_mask.bool(), x0, xt)
if self.config.keep_clean_bos:
xt[..., 0] = x0[..., 0]
return xt # type: ignore
raise NotImplementedError(
f"Diffusion type '{self.diffusion_type}' not implemented."
)
def _prepare_inputs(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.FloatTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
t: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Cache] = None,
):
# Prepare inputs for D3PM model
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if context_mask is None:
context_mask = torch.zeros_like(attention_mask)
if torch.is_floating_point(attention_mask):
attention_mask = attention_mask.to(torch.int)
context_mask = context_mask.to(torch.int)
if t is None:
t = torch.rand(input_ids.shape[0], device=input_ids.device)
alpha_t, alpha_t_prime = self.noise_schedule(t)
while alpha_t.ndim < 2:
alpha_t = alpha_t[..., None]
alpha_t_prime = alpha_t_prime[..., None]
xt = self._sample_q_xt(
x0=input_ids,
alpha_t=alpha_t,
context_mask=context_mask,
)
if (
context_mask is not None
and context_mask.sum() == 0
and (attention_mask == 1).all()
):
processed_attention_mask = None
else:
processed_attention_mask = (
self.static_attention_mask[None, ...]
& attention_mask[:, None, :]
& attention_mask[..., None]
)[:, None, ...] # Make attention mask 4D
processed_attention_mask = self._preprocess_attention_mask(
processed_attention_mask, dtype=torch.float
)
if self.training and self.config.train_on_context:
tokens_mask = attention_mask
else:
tokens_mask = attention_mask * (1 - context_mask)
return DenoiserInput(
xt=xt,
x0=input_ids,
attention_mask=processed_attention_mask,
context_mask=context_mask,
tokens_mask=tokens_mask,
t=t,
alpha_t=alpha_t,
alpha_t_prime=alpha_t_prime,
)
def _prepare_inputs_inference(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
context: Optional[torch.LongTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
cache: Optional[Dict[str, Any]] = None,
**backbone_kwargs: Any,
) -> Tuple[DenoiserInput, Dict[str, Any]]:
assert input_ids is not None or context is not None, (
"Must provide either input_ids or context."
)
cache = cache if cache is not None else {}
past_key_values = cache.pop("past_key_values", DynamicCache())
if context is not None:
if input_ids is not None:
if context_mask is None:
context_mask = torch.cat(
[torch.ones_like(context), torch.zeros_like(input_ids)], dim=-1
)
input_ids = torch.cat([context, input_ids], dim=-1)
else:
input_ids = context
context_mask = torch.ones_like(input_ids)
if attention_mask is None:
cache_length = self._get_past_key_values_seq_length(past_key_values)
full_seq_length = cache_length + input_ids.shape[-1]
attention_mask = torch.ones(
(input_ids.shape[0], 1, input_ids.shape[1], full_seq_length),
device=input_ids.device,
) # Make attention mask 4D
attention_mask = self._preprocess_attention_mask(
attention_mask, dtype=torch.float
)
return DenoiserInput(
xt=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
context_mask=context_mask,
backbone_kwargs=backbone_kwargs | {"use_cache": False},
), cache
def _forward(
self,
backbone_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs,
) -> torch.FloatTensor:
return torch.log_softmax(backbone_output, dim=-1) # type: ignore
def _compute_loss(
self,
model_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs: Any,
) -> LossAndNllOutput:
raise NotImplementedError
def _sample_prior(self, device, batch_size, length):
"""Samples from prior / limiting distribution."""
if self.diffusion_type == "absorbing":
return self.mask_token_id * torch.ones(
(batch_size, length), dtype=torch.int64, device=device
)
if self.diffusion_type == "uniform":
return torch.randint(
0,
self.vocab_size,
(batch_size, length),
device=device,
dtype=torch.int64,
)
raise NotImplementedError(
f"Diffusion type '{self.diffusion_type}' not implemented."
)
def _compute_posterior(
self,
x: Union[torch.FloatTensor, torch.LongTensor],
xt: torch.LongTensor,
alpha_t: torch.FloatTensor,
alpha_s: torch.FloatTensor,
) -> torch.FloatTensor:
"""Computes posterior / approximate posterior q(x_s | x_t, x),
where x represents clean sequence (as one-hots) or the output of the
denoising model.
Args:
x (Tensor): True (one-hot) / predicted clean signal (B, L, V).
xt (Tensor): Noised signal at time t (B, L).
alpha_t (Tensor): Noise schedule parameter at time t (B, 1, 1).
alpha_s (Tensor): Noise schedule parameter at time s (B, 1, 1).
"""
if self.diffusion_type == "absorbing":
q_xs = x * (alpha_s - alpha_t)
q_xs[..., self.mask_token_id] = 1 - alpha_s[..., 0]
q_xs /= 1 - alpha_t
return q_xs # type: ignore
alpha_ts = alpha_t / alpha_s
d_alpha = alpha_s - alpha_t
xt_one_hot = torch.nn.functional.one_hot(x, self.vocab_size)
limiting_distribution = torch.ones_like(xt_one_hot) / self.vocab_size
if self.diffusion_type == "uniform":
return (
alpha_t * self.vocab_size * x * xt_one_hot
+ (alpha_ts - alpha_t) * xt_one_hot
+ d_alpha * x
+ (1 - alpha_ts) * (1 - alpha_s) * limiting_distribution
) / (
alpha_t * self.vocab_size * torch.gather(x, -1, xt[..., None])
+ (1 - alpha_t)
)
raise NotImplementedError(
f"Diffusion type {self.diffusion_type} not implemented."
)
@staticmethod
def _sample_generation_timesteps(
generation_config: DiffusionGenerationConfig,
max_length: Optional[int] = None,
device: Optional[str] = None,
) -> torch.FloatTensor:
"""Sample timesteps for diffusion generation process."""
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
if max_length is None:
max_length = generation_config.max_new_tokens
if (
generation_config.first_hitting
# TODO: first-hitting does not work with posterior
and generation_config.sampling_strategy == "posterior"
):
timesteps = torch.FloatTensor([1.0])
for i in range(max_length, 0, -1):
u = torch.rand(1)
next_t = timesteps[-1] * u ** (1 / i)
timesteps = torch.cat((timesteps, next_t), dim=0)
return timesteps[1:].to(device) # type: ignore
return torch.linspace( # type: ignore
1.0,
generation_config.min_t,
generation_config.num_steps + 1,
device=device,
)[:-1]
def _generate_unconditional(
self,
generation_config: DiffusionGenerationConfig,
alpha_t: torch.FloatTensor,
alpha_s: torch.FloatTensor,
denoiser_inputs: Optional[DenoiserInput] = None,
model_output_cache: Optional[Dict[str, torch.FloatTensor]] = None,
cache: Optional[Dict[str, Any]] = None,
running_generation: Optional[torch.LongTensor] = None,
logits_processor: Optional[LogitsProcessorList] = None,
**kwargs: Any,
) -> Tuple[torch.LongTensor, Dict[str, torch.FloatTensor], Dict[str, Any]]:
cache = cache if cache is not None else {}
if model_output_cache is None: # execute function evaluation
backbone_output = self._backbone_forward(
denoiser_inputs,
fix_cache_length=True, # Do not let kv cache grow on each forward call
**cache,
**kwargs,
)
backbone_output = {k: v for k, v in backbone_output.items()}
logits = backbone_output.pop("logits")
cache = cache | backbone_output
log_x_theta = self._forward(logits, denoiser_inputs, **kwargs)
if logits_processor is not None:
for token_idx in range(log_x_theta.shape[1]):
# TODO: Looping over token positions like this does not allow for
# some processors, e.g. length penalty which could be applied all
# at once to the entire block, to be applied in parallel.
log_x_theta[:, token_idx] = logits_processor(
input_ids=running_generation,
scores=log_x_theta[:, token_idx], # type: ignore
)
log_x_theta = torch.log_softmax(log_x_theta, dim=-1) # re-normalize
x_theta = log_x_theta.exp()
else:
x_theta = model_output_cache["x_theta"]
model_output_cache = {"x_theta": x_theta}
prob_check_denom = denoiser_inputs.xt.numel()
if generation_config.sampling_strategy == "posterior":
q_xs = self._compute_posterior(
x_theta, denoiser_inputs.xt, alpha_t, alpha_s
)
assert abs((q_xs.sum() / prob_check_denom).item() - 1.0) < 1e-6, (
"Posterior probabilities not summing to 1."
)
assert q_xs.isnan().sum().item() == 0, "NaN found in the posterior."
xs = self._sample_categorical(q_xs, generation_config.do_sample)
output = torch.where(
(denoiser_inputs.xt != self.mask_token_id).bool(), # type: ignore
denoiser_inputs.xt,
xs,
)
elif generation_config.sampling_strategy == "predict_and_noise":
assert self.config.diffusion_type == "absorbing", (
"predict_and_noise decoding strategy only supports absorbing diffusion."
)
# assert (
# abs((x_theta.sum() / prob_check_denom).item() - 1.0) < 1e-6
# ), "Denoising output probabilities not summing to 1."
# assert x_theta.isnan().sum().item() == 0, (
# "NaN found in the denoising output."
# )
# Predict
xs = self._sample_categorical(x_theta, generation_config.do_sample)
xs_probs = x_theta.gather(-1, xs[..., None]).squeeze(dim=-1)
output = xs.clone()
# Noise
num_noise_indices = torch.minimum(
((1 - alpha_s) * generation_config.block_size).to(torch.int),
(denoiser_inputs.xt == self.mask_token_id).sum() - 1, # type: ignore
)
if generation_config.confidence_based_noising:
conf = x_theta.gather(-1, xs[..., None]).squeeze(-1)
conf = torch.where( # already decoded tokens have 'inf' confidence
(denoiser_inputs.xt == self.mask_token_id).bool(), # type: ignore
conf,
torch.inf,
)
noise_indices = conf.argsort(dim=-1)[..., :num_noise_indices]
elif generation_config.confidence_margin_based_noising:
top2 = torch.topk(x_theta, k=2, dim=-1).values # shape: (B, L, 2)
conf = (top2[..., 0] - top2[..., 1]).abs()
conf = torch.where( # already decoded tokens have 'inf' confidence
(denoiser_inputs.xt == self.mask_token_id).bool(), # type: ignore
conf,
torch.inf,
)
noise_indices = conf.argsort(dim=-1)[..., :num_noise_indices]
else:
# TODO: implement random noise indices selection
raise NotImplementedError
output[..., noise_indices] = self.mask_token_id
output = torch.where(
xs_probs >= generation_config.confidence_threshold, xs, output
)
else:
raise NotImplementedError(
f"Sampling strategy {generation_config.sampling_strategy} not"
" implemented."
)
return output, model_output_cache, cache # type: ignore
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.LongTensor] = None,
generation_config: Optional[DiffusionGenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
max_new_tokens: Optional[int] = None,
batch_size: Optional[int] = None,
device: Optional[str] = None,
tokenizer: Optional[PreTrainedTokenizer] = None,
disable_pbar: bool = False,
**kwargs: Any,
) -> torch.LongTensor:
# Setup sampling variables
if generation_config is None:
assert getattr(self, "generation_config", None) is not None, (
"Generation config must be provided if not present in the model."
)
generation_config = self.generation_config
if inputs is None:
inputs = torch.ones((batch_size, 1), device=device) * self.bos_token_id
if max_length is None:
if hasattr(generation_config, "max_length"):
max_length = generation_config.max_length
else:
max_length = self.max_length
if max_new_tokens is None:
if hasattr(generation_config, "max_new_tokens"):
max_new_tokens = generation_config.max_new_tokens
else:
max_new_tokens = max_length - inputs.shape[-1]
batch_size = batch_size if batch_size is not None else inputs.shape[0]
assert batch_size == 1, "Batched sampling not supported yet"
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
block_size = generation_config.block_size
max_blocks = max_new_tokens // block_size
# Sample max generation length tensor from prior
accumulated_samples = self._sample_prior(
device=device,
batch_size=batch_size,
length=max_blocks * block_size,
)
accumulated_samples = torch.cat([inputs, accumulated_samples], dim=-1)
if generation_config.use_cache and inputs.numel() > 0:
cache = self.update_cache(
inputs=inputs[:, : block_size * (inputs.shape[-1] // block_size)]
if generation_config.align_inputs_to_blocks
else inputs,
cache={},
)
else:
cache = None
if generation_config.align_inputs_to_blocks:
inputs_offset = (
block_size * (inputs.shape[-1] // block_size)
if inputs.numel() > 0
else 0
)
else:
inputs_offset = inputs.shape[-1] if inputs.numel() > 0 else 0
total_NFEs = 0
timesteps = self._sample_generation_timesteps( # Re-use in every block
generation_config, max_length=block_size, device=device
)
dt = (1 - generation_config.min_t) / len(timesteps)
block_pbar = tqdm(
range(max_blocks),
desc="Blocks",
leave=True,
disable=disable_pbar,
)
for block_id in block_pbar:
block_NFEs = 0
xt = accumulated_samples[
:,
inputs_offset + (block_id * block_size) : inputs_offset
+ ((block_id + 1) * block_size),
]
if self.mask_token_id not in xt:
continue
step_pbar = tqdm(
timesteps,
desc="T",
total=timesteps.shape[0],
leave=False,
disable=disable_pbar,
)
model_output_cache = None
context = (
accumulated_samples[:, : (block_id * block_size) + inputs_offset]
if not generation_config.use_cache
else None
)
# Used for logit processing
running_generation = accumulated_samples[
:,
inputs_offset : inputs_offset + (block_id * block_size),
]
for t in step_pbar:
if model_output_cache is None:
block_NFEs += 1
total_NFEs += 1
# t is 0-dim tensor, reshape to (1, 1, 1) for broadcasting
alpha_t, _ = self.noise_schedule(t)
alpha_s, _ = self.noise_schedule(t - dt)
alpha_t = alpha_t[None, None, None]
alpha_s = alpha_s[None, None, None]
denoiser_inputs, cache = self._prepare_inputs_inference(
input_ids=xt,
context=context,
cache=cache if generation_config.use_cache else None,
)
xs, model_output_cache, cache = self._generate_unconditional(
generation_config=generation_config,
alpha_t=alpha_t,
alpha_s=alpha_s,
denoiser_inputs=denoiser_inputs,
model_output_cache=model_output_cache,
cache=cache,
running_generation=running_generation, # type: ignore
logits_processor=logits_processor,
tokenizer=tokenizer,
**kwargs,
)
block_pbar.set_postfix(
NFEs=total_NFEs,
block_NFEs=block_NFEs,
)
if (
not torch.allclose(xs, denoiser_inputs.xt)
or not generation_config.use_model_output_cache
):
model_output_cache = None
if not generation_config.use_cache:
xt[..., -block_size:] = xs[..., -block_size:]
else:
xt = xs
if (
xt == self.mask_token_id
).sum().item() == 0 and self.config.diffusion_type == "absorbing":
break
accumulated_samples[
:,
inputs_offset + (block_id * block_size) : inputs_offset
+ ((block_id + 1) * block_size),
] = xt
if tokenizer is not None: # Useful for debugging
print(tokenizer.batch_decode(accumulated_samples))
if stopping_criteria is not None:
is_done = stopping_criteria(
input_ids=accumulated_samples[ # type: ignore
:,
inputs_offset : inputs_offset + ((block_id + 1) * block_size),
],
scores=None, # type: ignore
)
if torch.any(is_done):
accumulated_samples = accumulated_samples[
:,
: inputs_offset + ((block_id + 1) * block_size),
]
break
if generation_config.use_cache:
cache = self.update_cache(
inputs=xt,
cache=cache,
)
return accumulated_samples # type: ignore
class MDLMConfig(D3PMConfig):
"""Configuration class for MDLM models."""
model_type = "mdlm"
auto_map = {
"AutoConfig": "diffusion.MDLMConfig",
"AutoModel": "diffusion.MDLM",
"AutoModelForMaskedLM": "diffusion.MDLM",
}
class MDLM(D3PM):
"""Denoiser class for MDLM models."""
config_class = MDLMConfig
def __init__(self, config: MDLMConfig, **kwargs):
super().__init__(config, **kwargs)
self.neg_infinity = -1e12
def _forward(
self,
backbone_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs,
) -> torch.FloatTensor:
# Zero-mask probability
backbone_output[..., self.mask_token_id] = self.neg_infinity
log_probs = backbone_output - torch.logsumexp(
backbone_output, dim=-1, keepdim=True
)
# Copy-over unmasked: For the log_probs of the unmasked tokens, set all values
# to -infinity except for the indices corresponding to
# the unmasked tokens.
xt = denoiser_inputs.xt
unmasked_indices = xt != self.mask_token_id
log_probs[unmasked_indices] = self.neg_infinity
log_probs[unmasked_indices, xt[unmasked_indices]] = 0
return log_probs # type: ignore
def _compute_loss(
self,
model_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs: Any,
) -> LossAndNllOutput:
log_p_theta = torch.gather(
input=model_output, dim=-1, index=denoiser_inputs.x0[:, :, None]
).squeeze(-1)
nlls = (
log_p_theta
* denoiser_inputs.alpha_t_prime
/ (1 - denoiser_inputs.alpha_t)
* denoiser_inputs.tokens_mask
)
if self.training:
batch_nll = -(log_p_theta * denoiser_inputs.tokens_mask).sum(dim=-1)
else:
batch_nll = nlls.sum(dim=-1)
count = denoiser_inputs.tokens_mask.sum(dim=-1)
token_nll = (batch_nll / count).mean()
return LossAndNllOutput(
loss=token_nll, # type: ignore
nlls=nlls,
other_loss_terms={
"masked_tokens": (denoiser_inputs.xt == self.mask_token_id).int()
},
)
class BD3LMConfig(MDLMConfig):
"""Configuration class for BD3LM models."""
model_type = "bd3lm"
auto_map = {
"AutoConfig": "diffusion.BD3LMConfig",
"AutoModel": "diffusion.BD3LM",
"AutoModelForMaskedLM": "diffusion.BD3LM",
}
def __init__(
self,
block_size: Optional[int] = None,
eval_block_size: Optional[int] = None,
**kwargs,
):
super().__init__(**kwargs)
self.block_size = block_size
self.eval_block_size = (
eval_block_size if eval_block_size is not None else block_size
)
class BD3LM(MDLM):
"""Denoiser class for BD3LM models."""
config_class = BD3LMConfig
def __init__(self, config: BD3LMConfig, **kwargs):
super().__init__(config, **kwargs)
# noinspection PyUnusedLocal
@staticmethod
def _block_mask(
b,
h,
q_idx,
kv_idx,
block_size: Optional[int] = None,
seq_length: Optional[int] = None,
) -> torch.Tensor:
del b, h
# Indicate whether token belongs to xt or x0:
xt_flag_q = (q_idx >= seq_length).bool()
xt_flag_kv = (kv_idx >= seq_length).bool()
# Compute block indices
block_q = torch.where(
xt_flag_q, (q_idx - seq_length) // block_size, q_idx // block_size
)
block_kv = torch.where(
xt_flag_kv, (kv_idx - seq_length) // block_size, kv_idx // block_size
)
# **1. Offset Block-Causal Mask (M_OBC) **
offset_block_causal = (block_q > block_kv) & ~xt_flag_kv & xt_flag_q
# **2. Block Diagonal Mask (M_BD) **
block_diagonal = (block_q == block_kv) & (xt_flag_q == xt_flag_kv)
# **3. Block-Causal Mask (M_BC) **
block_causal = (block_q >= block_kv) & ~xt_flag_kv & ~xt_flag_q
# **3. Combine Masks **
return block_diagonal | offset_block_causal | block_causal
def _create_static_mask(self) -> None:
if self.config.attn_backend == "sdpa":
static_mask = self._block_mask(
b=None,
h=None,
q_idx=torch.arange(self.config.length * 2)[:, None],
kv_idx=torch.arange(self.config.length * 2)[None, :],
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=self.config.length,
)
self.register_buffer(
"static_attention_mask",
static_mask,
)
self.skip_params_for_push.append("static_attention_mask")
elif self.config.attn_backend == "flex_attention":
mask = partial(
self._block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=self.config.length,
)
self.static_attention_mask = create_block_mask(
mask,
B=None,
H=None,
Q_LEN=self.config.length * 2,
KV_LEN=self.config.length * 2,
)
def _ensure_no_unmasked_blocks(
self,
input_ids: torch.LongTensor,
xt: torch.LongTensor,
context_mask: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
n_blocks = xt.shape[1] // self.config.block_size
# If context overlaps w/block, ignore it
blocks_without_masks = ((xt == self.mask_token_id) + context_mask).reshape(
-1, n_blocks, self.config.block_size
).sum(dim=-1) == 0
if blocks_without_masks.sum() > 0:
num_remasks_per_block = torch.randint(
0,
self.config.block_size,
blocks_without_masks.shape,
device=xt.device,
)
rand = torch.rand(xt.shape[0], xt.shape[1], device=xt.device)
perm_indices = torch.argsort(
rand.view(xt.shape[0], n_blocks, self.config.block_size),
stable=True,
dim=-1,
)
remask_indices = perm_indices <= num_remasks_per_block[..., None]
xt = torch.where(
remask_indices.view(xt.shape[0], xt.shape[1])
* blocks_without_masks.repeat_interleave(self.config.block_size, dim=1),
self.mask_token_id,
xt,
)
if self.config.keep_clean_bos:
xt[..., 0] = input_ids[..., 0]
return xt
def _prepare_inputs(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.FloatTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
t: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Cache] = None,
):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if context_mask is None:
context_mask = torch.zeros_like(attention_mask)
if torch.is_floating_point(attention_mask):
attention_mask = attention_mask.to(torch.int)
context_mask = context_mask.to(torch.int)
if t is None:
t = torch.rand(
input_ids.shape[0],
input_ids.shape[1] // self.config.block_size
if self.training
else self.config.eval_block_size,
device=input_ids.device,
).repeat_interleave(
self.config.block_size
if self.training
else self.config.eval_block_size,
dim=-1,
)
alpha_t, alpha_t_prime = self.noise_schedule(t)
while alpha_t.ndim < 2:
alpha_t = alpha_t[..., None]
alpha_t_prime = alpha_t_prime[..., None]
xt = self._sample_q_xt(x0=input_ids, alpha_t=alpha_t, context_mask=context_mask)
# Ensure each block has at least 1 masked token
if self.training:
xt = self._ensure_no_unmasked_blocks(
input_ids,
xt,
context_mask,
)
if self.config.attn_backend == "sdpa":
decoder_attention_mask = (
self.static_attention_mask[None, ...]
& attention_mask.repeat(1, 2)[:, None, :]
& attention_mask.repeat(1, 2)[..., None]
)[:, None, ...] # Make attention mask 4D
decoder_attention_mask = self._preprocess_attention_mask(
decoder_attention_mask, dtype=torch.float
)
elif self.config.attn_backend == "flex_attention":
if context_mask.any():
raise NotImplementedError(
"flex_attention with context_mask not implemented yet."
)
elif attention_mask is not None and (attention_mask != 1).any():
padding_mask = create_attn_mask(
attention_mask.bool().repeat(2, 2).bool()
)
dec_masks = [
partial(
self._block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=self.config.length,
),
padding_mask,
]
decoder_attention_mask = create_block_mask(
and_masks(*dec_masks),
B=input_ids.shape[0],
H=None,
Q_LEN=input_ids.shape[1] * 2,
KV_LEN=input_ids.shape[1] * 2,
)
else:
decoder_attention_mask = self.static_attention_mask
else:
raise ValueError("Unknown backbone backend")
backbone_input_ids = torch.cat((input_ids, xt), dim=-1)
position_ids = (
torch.arange(input_ids.shape[1]).repeat(2).to(input_ids.device)[None, :]
)
if self.training and self.config.train_on_context:
tokens_mask = attention_mask
else:
tokens_mask = attention_mask * (1 - context_mask)
return DenoiserInput(
xt=backbone_input_ids, # type: ignore
x0=input_ids,
attention_mask=decoder_attention_mask, # type: ignore
tokens_mask=tokens_mask,
t=t,
alpha_t=alpha_t,
alpha_t_prime=alpha_t_prime,
backbone_kwargs={
"cache_position": position_ids[0],
"position_ids": position_ids,
},
)
def _prepare_inputs_inference(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
context: Optional[torch.LongTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
cache: Optional[Dict[str, Any]] = None,
return_updated_cache: bool = False,
**backbone_kwargs: Dict[str, Any],
) -> Tuple[DenoiserInput, Union[Dict[str, Any], None]]:
device = input_ids.device if input_ids is not None else context.device
assert input_ids is not None or context is not None, (
"Must provide either input_ids or context."
)
cache = cache if cache is not None else {}
past_key_values = cache.pop("past_key_values", DynamicCache())
if context is not None:
if input_ids is not None:
input_ids = torch.cat([context, input_ids], dim=-1)
else:
input_ids = context
cache_length = self._get_past_key_values_seq_length(past_key_values)
full_seq_length = cache_length + input_ids.shape[-1]
decoder_attention_mask = self.static_attention_mask[
None,
None,
cache_length:full_seq_length,
:full_seq_length,
] # Make attention mask 4D
decoder_attention_mask = self._preprocess_attention_mask(
decoder_attention_mask, dtype=torch.float
)
position_ids = torch.arange(cache_length, full_seq_length).to(device)[None, :]
return DenoiserInput(
xt=input_ids,
attention_mask=decoder_attention_mask,
context_mask=context_mask,
past_key_values=past_key_values,
backbone_kwargs={
"position_ids": position_ids,
}
| backbone_kwargs,
), cache
def _compute_loss(
self,
model_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs: Any,
) -> LossAndNllOutput:
input_length = denoiser_inputs.xt.shape[1] // 2
model_output = model_output[:, input_length:, ...]
return super()._compute_loss(
model_output=model_output, # type: ignore
denoiser_inputs=denoiser_inputs,
**kwargs,
)
class E2D2Config(BD3LMConfig):
"""Configuration class for E2D2 models."""
model_type = "e2d2"
auto_map = {
"AutoConfig": "diffusion.E2D2Config",
"AutoModel": "diffusion.E2D2",
"AutoModelForMaskedLM": "diffusion.E2D2",
}
def __init__(
self,
**kwargs,
):
super().__init__(**kwargs)
class E2D2(BD3LM):
"""Denoiser class for E2D2 models."""
config_class = E2D2Config
def __init__(self, config: E2D2Config, **kwargs):
super().__init__(config, **kwargs)
# noinspection PyUnusedLocal
@staticmethod
def _encoder_block_mask(
b,
h,
q_idx,
kv_idx,
block_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
q_idx (Tensor): Query indices.
kv_idx (Tensor): Key indices
b (Optional: int): batch size
h (Optional: int): number of heads
block_size (Optional: int): Defines the block structure.
Returns:
Encoder block-causal attention mask.
"""
# Compute block indices
block_q = q_idx // block_size
block_kv = kv_idx // block_size
# ** Block-Causal Mask **
return block_q >= block_kv
# noinspection PyUnusedLocal
@staticmethod
def _decoder_block_mask(
b,
h,
q_idx,
kv_idx,
block_size: Optional[int] = None,
seq_length: Optional[int] = None,
) -> torch.Tensor:
# Indicate whether token belongs to xt or x0:
xt_flag_kv = (kv_idx >= seq_length).bool()
# Compute block indices
block_q = q_idx // block_size
block_kv = torch.where(
xt_flag_kv, (kv_idx - seq_length) // block_size, kv_idx // block_size
)
# **1. Offset Block-Causal Mask (M_OBC) **
offset_block_causal = (block_q > block_kv) & ~xt_flag_kv
# **2. Block Diagonal Mask (M_BD) **
block_diagonal = (block_q == block_kv) & xt_flag_kv
# **3. Combine Masks **
return block_diagonal | offset_block_causal
def _create_static_mask(self) -> None:
if self.config.attn_backend == "flex_attention":
enc_mask = partial(
self._encoder_block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
)
encoder_attention_mask = create_block_mask(
enc_mask,
B=None,
H=None,
Q_LEN=self.config.length,
KV_LEN=self.config.length,
)
dec_mask = partial(
self._decoder_block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=self.config.length,
)
decoder_attention_mask = create_block_mask(
dec_mask,
B=None,
H=None,
Q_LEN=self.config.length,
KV_LEN=self.config.length * 2,
)
self.encoder_static_attention_mask = encoder_attention_mask
self.static_attention_mask = decoder_attention_mask
else:
encoder_static_mask = self._encoder_block_mask(
b=None, # type: ignore
h=None, # type: ignore
q_idx=torch.arange(self.config.length)[:, None],
kv_idx=torch.arange(self.config.length)[None, :],
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
)
decoder_static_mask = self._decoder_block_mask(
b=None,
h=None,
q_idx=torch.arange(self.config.length)[:, None],
kv_idx=torch.arange(self.config.length * 2)[None, :],
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=self.config.length,
)
self.register_buffer(
"encoder_static_attention_mask",
encoder_static_mask,
)
self.register_buffer(
"static_attention_mask",
decoder_static_mask,
)
self.skip_params_for_push.append("encoder_static_attention_mask")
self.skip_params_for_push.append("static_attention_mask")
def _prepare_inputs(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.FloatTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
t: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Cache] = None,
):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if context_mask is None:
context_mask = torch.zeros_like(attention_mask)
if torch.is_floating_point(attention_mask):
attention_mask = attention_mask.to(torch.int)
context_mask = context_mask.to(torch.int)
if t is None:
t = torch.rand(
input_ids.shape[0],
input_ids.shape[1] // self.config.block_size
if self.training
else self.config.eval_block_size,
device=input_ids.device,
).repeat_interleave(
self.config.block_size
if self.training
else self.config.eval_block_size,
dim=-1,
)
alpha_t, alpha_t_prime = self.noise_schedule(t)
while alpha_t.ndim < 2:
alpha_t = alpha_t[..., None]
alpha_t_prime = alpha_t_prime[..., None]
xt = self._sample_q_xt(x0=input_ids, alpha_t=alpha_t, context_mask=context_mask)
# Ensure each block has at least 1 masked token
if self.training:
xt = self._ensure_no_unmasked_blocks(
input_ids,
xt,
context_mask,
)
if self.config.attn_backend == "sdpa":
decoder_attention_mask = (
self.static_attention_mask[None, ...]
& attention_mask.repeat(1, 2)[:, None, :]
& attention_mask[..., None]
)[:, None, ...] # Make attention mask 4D
encoder_attention_mask = (
(
self.encoder_static_attention_mask[None, ...]
| context_mask[:, None, :]
)
& attention_mask[:, None, :]
& attention_mask[..., None]
)[:, None, ...] # Make attention mask 4D
encoder_attention_mask = self._preprocess_attention_mask(
encoder_attention_mask, dtype=torch.float
)
decoder_attention_mask = self._preprocess_attention_mask(
decoder_attention_mask, dtype=torch.float
)
elif self.config.attn_backend == "flex_attention":
# TODO enable bidirectional attention on context for seq2seq tasks
if context_mask.any():
raise NotImplementedError(
"flex_attention with context_mask not implemented yet."
)
elif attention_mask is not None and (attention_mask != 1).any():
padding_mask = create_attn_mask(attention_mask.bool())
dec_padding_mask = create_attn_mask(attention_mask.repeat(1, 2).bool())
enc_masks = [
partial(
self._encoder_block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
),
padding_mask,
]
encoder_attention_mask = create_block_mask(
and_masks(*enc_masks),
B=input_ids.shape[0],
H=None,
Q_LEN=input_ids.shape[1],
KV_LEN=input_ids.shape[1],
)
dec_masks = [
partial(
self._decoder_block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=input_ids.shape[1],
),
dec_padding_mask,
]
decoder_attention_mask = create_block_mask(
and_masks(*dec_masks),
B=input_ids.shape[0],
H=None,
Q_LEN=input_ids.shape[1],
KV_LEN=input_ids.shape[1] * 2,
)
else:
encoder_attention_mask = self.encoder_static_attention_mask
decoder_attention_mask = self.static_attention_mask
else:
raise ValueError("Unknown backbone backend")
position_ids = torch.arange(input_ids.shape[1]).to(input_ids.device)[None, :]
if self.training and self.config.train_on_context:
tokens_mask = attention_mask
else:
tokens_mask = attention_mask * (1 - context_mask)
return DenoiserInput(
xt=xt,
x0=input_ids,
attention_mask=decoder_attention_mask,
tokens_mask=tokens_mask,
t=t,
alpha_t=alpha_t,
alpha_t_prime=alpha_t_prime,
backbone_kwargs={
"encoder_input_ids": input_ids,
"encoder_attention_mask": encoder_attention_mask,
"encoder_position_ids": position_ids,
"encoder_cache_position": position_ids[0],
},
)
def _prepare_inputs_inference(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
context: Optional[torch.LongTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
cache: Optional[Dict[str, Any]] = None,
return_updated_cache: bool = False,
**backbone_kwargs: Dict[str, Any],
) -> Tuple[DenoiserInput, Union[Dict[str, Any], None]]:
device = input_ids.device if input_ids is not None else context.device
batch_size = input_ids.shape[0] if input_ids is not None else context.shape[0]
assert input_ids is not None or context is not None, (
"Must provide either input_ids or context."
)
if return_updated_cache: # Indicates this is a cache update step
context = input_ids
input_ids = None
position_ids, encoder_position_ids = None, None
if cache is not None:
past_key_values = cache.pop("past_key_values", DynamicCache())
encoder_past_key_values = cache.pop(
"encoder_past_key_values", DynamicCache()
)
encoder_last_hidden_state = cache.pop("encoder_last_hidden_state", None)
if input_ids is not None: # Skip enc: nothing new to cache
cache_length = self._get_past_key_values_seq_length(past_key_values)
if encoder_last_hidden_state is not None:
full_seq_length = (
cache_length
+ encoder_last_hidden_state.shape[1] # type: ignore
+ input_ids.shape[-1]
)
else:
full_seq_length = cache_length + input_ids.shape[-1]
encoder_attention_mask = None
position_ids = torch.arange(
cache_length, full_seq_length, device=device
)[None, :]
else: # Caching new tokens in the enc
encoder_cache_length = self._get_past_key_values_seq_length(
encoder_past_key_values
if len(encoder_past_key_values) > 0
else past_key_values
)
encoder_full_seq_length = encoder_cache_length + context.shape[-1]
encoder_attention_mask = torch.ones(
(
1,
1,
encoder_full_seq_length - encoder_cache_length,
encoder_full_seq_length,
),
device=context.device,
)
encoder_position_ids = torch.arange(
encoder_cache_length, encoder_full_seq_length
).to(device)[None, :]
encoder_attention_mask = self._preprocess_attention_mask(
encoder_attention_mask, dtype=torch.float
)
full_seq_length = -1 # Not used
else: # Not using kv-cache
past_key_values = None
encoder_past_key_values, encoder_last_hidden_state = None, None
if context is not None:
context_len = context.shape[1]
encoder_attention_mask = torch.ones(
(1, 1, context_len, context_len), device=context.device
)
encoder_attention_mask = self._preprocess_attention_mask(
encoder_attention_mask, dtype=torch.float
)
encoder_position_ids = torch.arange(context_len).to(device)[None, :]
else:
context_len = 0
encoder_attention_mask = None
if input_ids is not None:
full_seq_length = context_len + input_ids.shape[1]
else:
full_seq_length = context_len
position_ids = torch.arange(context_len, full_seq_length).to(device)[
None, :
]
if input_ids is not None:
decoder_attention_mask = torch.ones(
(batch_size, 1, input_ids.shape[1], full_seq_length),
device=device,
) # Make attention mask 4D
decoder_attention_mask = self._preprocess_attention_mask(
decoder_attention_mask, dtype=torch.float
)
else:
decoder_attention_mask = None
return DenoiserInput(
xt=input_ids,
attention_mask=decoder_attention_mask,
context_mask=context_mask,
past_key_values=past_key_values,
backbone_kwargs={
"position_ids": position_ids,
"encoder_input_ids": context,
"encoder_position_ids": encoder_position_ids,
"encoder_attention_mask": encoder_attention_mask,
"encoder_past_key_values": encoder_past_key_values,
"encoder_last_hidden_state": encoder_last_hidden_state,
}
| backbone_kwargs,
), cache # TODO: potentially returning cache None, violates return type
def _compute_loss(
self,
model_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs: Any,
) -> LossAndNllOutput:
# Use MDLM `_compute_loss`, since BD3LM method splits model_output
return super(BD3LM, self)._compute_loss(
model_output=model_output,
denoiser_inputs=denoiser_inputs,
**kwargs,
)
|