Feature Extraction
Transformers
PyTorch
e2d2
custom_code
e2d2-wmt / diffusion.py
yairschiff's picture
Add model and code
b5a4dcb verified
from functools import partial
from typing import Any, Dict, Literal, Optional, Tuple, Union
import torch
from tqdm.auto import tqdm
from transformers import (
GenerationConfig,
LogitsProcessorList,
PreTrainedTokenizer,
StoppingCriteriaList,
)
from transformers.cache_utils import Cache, DynamicCache
try:
from torch.nn.attention.flex_attention import (
BlockMask,
and_masks,
create_block_mask,
)
except ImportError:
BlockMask, and_masks, create_block_mask = None, None, None
from .denoiser_base import (
Denoiser,
DenoiserConfig,
DenoiserInput,
LossAndNllOutput,
)
def create_attn_mask(attn_mask):
# noinspection PyUnusedLocal
def padding(b, h, q_idx, kv_idx):
return attn_mask[b, q_idx] & attn_mask[b, kv_idx]
return padding
class DiffusionGenerationConfig(GenerationConfig):
def __init__(
self,
num_steps: int = 1000,
min_t: float = 1e-5,
block_size: Optional[int] = None,
first_hitting: bool = False,
sampling_strategy: Literal["posterior", "predict_then_noise"] = "posterior",
confidence_based_noising: bool = False,
confidence_margin_based_noising: bool = False,
confidence_threshold: float = 1e6,
use_model_output_cache: bool = True,
align_inputs_to_blocks: bool = True,
**kwargs,
):
"""Generation config with additional parameters relevant for diffusion model
sampling.
Args:
num_steps (int): Number of diffusion / iterative refinement steps.
Defaults to 1000.
min_t (float): Minimum time to use.
Diffusion models use t=1 for noise and t=0 for signal.
Setting t=0 exactly can lead to certain numerical instabilities.
Defaults to 1e-5.
block_size (int): Block size to use for semi-autoregressive decoding.
Defaults to None (in which case block_size is set to max_new_tokens).
first_hitting (bool): Whether to use first hitting sampler.
When set to true, rather than following the diffusion time and sampling
from posterior, which can result in no tokens changing between steps,
e.g., for masked diffusion, we explicitly determine the next time step
at which a token will be decoded / generated.
Note: this will negate the `num_steps` parameter, as we will decode one
token at a time, hence, when True, num_steps = seq_length
(or block_size, for semi-autoregressive).
See https://arxiv.org/abs/2409.02908 for details.
Defaults to False.
sampling_strategy (str): Method for transitioning between latents.
Options:
- "posterior" - Compute and sample from the posterior
q(x_s | x_t, x_theta).
- "predict_then_noise" - Sample from the denoising model x_theta,
then add back noise to produce x_s.
Only implemented for absorbing diffusion.
Defaults to "posterior".
confidence_based_noising (bool): When using the "predict_then_noise"
strategy, whether to add noise to random positions or to those that have
the lowest probability under x_theta.
Cannot be used in conjunction with confidence_margin_based_noising.
Defaults to False.
confidence_margin_based_noising (bool): When using the "predict_then_noise"
strategy, whether to add noise to random positions or to those that have
the lowest probability margins under x_theta, where margin is defined as
the absolute difference between the top two probabilities at a given
position.
See https://arxiv.org/abs/2502.06768 for details.
Cannot be used in conjunction with confidence_based_noising.
Defaults to False.
confidence_threshold (float): Confidence threshold to use for sampling.
Any tokens that exceed threshold are decoded.
See https://arxiv.org/abs/2505.22618 for details.
Defaults to 1e6.
use_model_output_cache (bool): Whether to re-use model's output, if sequence
is unchanged, because if xt == xs, we can simply re-use the denoising
model's outputs and save a function evaluation.
Relevant if model.backbone is not time/noise-conditioned.
Defaults to True.
align_inputs_to_blocks (bool): Whether to align input tokens to block size,
e.g., for an input of length C and block size S, context will be C // S,
and generation will begin with a block whose first C % S tokens come
from the input.
kwargs: Keyword arguments passed to `GenerationConfig`.
"""
super().__init__(**kwargs)
self.num_steps = num_steps
self.min_t = min_t
# TODO: assumes we are setting max_new_tokens, which may not be the case!
self.block_size = block_size if block_size is not None else self.max_new_tokens
self.first_hitting = first_hitting
if self.first_hitting:
# TODO: log.warn that this is being overridden
self.num_steps = min(num_steps, self.block_size)
self.sampling_strategy = sampling_strategy
assert not confidence_based_noising or not confidence_margin_based_noising, (
"Cannot use both `confidence_based_noising` and"
" `confidence_margin_based_noising`."
)
self.confidence_based_noising = confidence_based_noising
self.confidence_margin_based_noising = confidence_margin_based_noising
self.confidence_threshold = confidence_threshold
self.use_model_output_cache = use_model_output_cache
self.align_inputs_to_blocks = align_inputs_to_blocks
class D3PMConfig(DenoiserConfig):
"""Configuration class for D3PM models."""
model_type = "d3pm"
auto_map = {
"AutoConfig": "diffusion.D3PMConfig",
"AutoModel": "diffusion.D3PM",
"AutoModelForMaskedLM": "diffusion.D3PM",
}
def __init__(
self,
keep_clean_bos: Optional[bool] = None, # Whether to enforce un-noised BOS token
T: int = 1000,
diffusion_type: Literal["absorbing", "uniform"] = "absorbing",
**kwargs,
):
super().__init__(**kwargs)
self.keep_clean_bos = keep_clean_bos
self.diffusion_type = diffusion_type
self.T = T
class D3PM(Denoiser):
"""Denoiser class for D3PM models.
This class implements the Denoiser interface for D3PM models.
"""
config_class = D3PMConfig
def __init__(self, config: D3PMConfig, **kwargs):
super().__init__(config, **kwargs)
self.T = config.T
self.diffusion_type = config.diffusion_type
self._create_static_mask()
def _create_static_mask(self) -> None:
static_mask = torch.ones(
self.config.length, self.config.length, dtype=torch.bool
)
self.register_buffer(
"static_attention_mask",
static_mask,
)
self.skip_params_for_push.append("static_attention_mask")
def _sample_q_xt(
self,
x0: torch.LongTensor,
alpha_t: torch.FloatTensor,
context_mask: torch.FloatTensor,
) -> torch.LongTensor:
"""Sample from the pre-defined forward / noising process.
Parameters:
x0 (Tensor): Signal / data sample;
can potentially include context tokens.
alpha_t (Tensor): Amount of signal to retain.
context_mask (Tensor): Indicator of context tokens (to remain
unchanged).
"""
move_indices = torch.rand(*x0.shape, device=x0.device) < (1.0 - alpha_t)
if self.diffusion_type == "absorbing":
xt = torch.where(
(move_indices * (1 - context_mask)).bool(), self.mask_token_id, x0
)
if self.config.keep_clean_bos:
xt[..., 0] = x0[..., 0]
return xt # type: ignore
if self.diffusion_type == "uniform":
xt = torch.randint(0, self.vocab_size, x0.shape, device=x0.device)
xt = torch.where(context_mask.bool(), x0, xt)
if self.config.keep_clean_bos:
xt[..., 0] = x0[..., 0]
return xt # type: ignore
raise NotImplementedError(
f"Diffusion type '{self.diffusion_type}' not implemented."
)
def _prepare_inputs(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.FloatTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
t: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Cache] = None,
):
# Prepare inputs for D3PM model
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if context_mask is None:
context_mask = torch.zeros_like(attention_mask)
if torch.is_floating_point(attention_mask):
attention_mask = attention_mask.to(torch.int)
context_mask = context_mask.to(torch.int)
if t is None:
t = torch.rand(input_ids.shape[0], device=input_ids.device)
alpha_t, alpha_t_prime = self.noise_schedule(t)
while alpha_t.ndim < 2:
alpha_t = alpha_t[..., None]
alpha_t_prime = alpha_t_prime[..., None]
xt = self._sample_q_xt(
x0=input_ids,
alpha_t=alpha_t,
context_mask=context_mask,
)
if (
context_mask is not None
and context_mask.sum() == 0
and (attention_mask == 1).all()
):
processed_attention_mask = None
else:
processed_attention_mask = (
self.static_attention_mask[None, ...]
& attention_mask[:, None, :]
& attention_mask[..., None]
)[:, None, ...] # Make attention mask 4D
processed_attention_mask = self._preprocess_attention_mask(
processed_attention_mask, dtype=torch.float
)
if self.training and self.config.train_on_context:
tokens_mask = attention_mask
else:
tokens_mask = attention_mask * (1 - context_mask)
return DenoiserInput(
xt=xt,
x0=input_ids,
attention_mask=processed_attention_mask,
context_mask=context_mask,
tokens_mask=tokens_mask,
t=t,
alpha_t=alpha_t,
alpha_t_prime=alpha_t_prime,
)
def _prepare_inputs_inference(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
context: Optional[torch.LongTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
cache: Optional[Dict[str, Any]] = None,
**backbone_kwargs: Any,
) -> Tuple[DenoiserInput, Dict[str, Any]]:
assert input_ids is not None or context is not None, (
"Must provide either input_ids or context."
)
cache = cache if cache is not None else {}
past_key_values = cache.pop("past_key_values", DynamicCache())
if context is not None:
if input_ids is not None:
if context_mask is None:
context_mask = torch.cat(
[torch.ones_like(context), torch.zeros_like(input_ids)], dim=-1
)
input_ids = torch.cat([context, input_ids], dim=-1)
else:
input_ids = context
context_mask = torch.ones_like(input_ids)
if attention_mask is None:
cache_length = self._get_past_key_values_seq_length(past_key_values)
full_seq_length = cache_length + input_ids.shape[-1]
attention_mask = torch.ones(
(input_ids.shape[0], 1, input_ids.shape[1], full_seq_length),
device=input_ids.device,
) # Make attention mask 4D
attention_mask = self._preprocess_attention_mask(
attention_mask, dtype=torch.float
)
return DenoiserInput(
xt=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
context_mask=context_mask,
backbone_kwargs=backbone_kwargs | {"use_cache": False},
), cache
def _forward(
self,
backbone_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs,
) -> torch.FloatTensor:
return torch.log_softmax(backbone_output, dim=-1) # type: ignore
def _compute_loss(
self,
model_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs: Any,
) -> LossAndNllOutput:
raise NotImplementedError
def _sample_prior(self, device, batch_size, length):
"""Samples from prior / limiting distribution."""
if self.diffusion_type == "absorbing":
return self.mask_token_id * torch.ones(
(batch_size, length), dtype=torch.int64, device=device
)
if self.diffusion_type == "uniform":
return torch.randint(
0,
self.vocab_size,
(batch_size, length),
device=device,
dtype=torch.int64,
)
raise NotImplementedError(
f"Diffusion type '{self.diffusion_type}' not implemented."
)
def _compute_posterior(
self,
x: Union[torch.FloatTensor, torch.LongTensor],
xt: torch.LongTensor,
alpha_t: torch.FloatTensor,
alpha_s: torch.FloatTensor,
) -> torch.FloatTensor:
"""Computes posterior / approximate posterior q(x_s | x_t, x),
where x represents clean sequence (as one-hots) or the output of the
denoising model.
Args:
x (Tensor): True (one-hot) / predicted clean signal (B, L, V).
xt (Tensor): Noised signal at time t (B, L).
alpha_t (Tensor): Noise schedule parameter at time t (B, 1, 1).
alpha_s (Tensor): Noise schedule parameter at time s (B, 1, 1).
"""
if self.diffusion_type == "absorbing":
q_xs = x * (alpha_s - alpha_t)
q_xs[..., self.mask_token_id] = 1 - alpha_s[..., 0]
q_xs /= 1 - alpha_t
return q_xs # type: ignore
alpha_ts = alpha_t / alpha_s
d_alpha = alpha_s - alpha_t
xt_one_hot = torch.nn.functional.one_hot(x, self.vocab_size)
limiting_distribution = torch.ones_like(xt_one_hot) / self.vocab_size
if self.diffusion_type == "uniform":
return (
alpha_t * self.vocab_size * x * xt_one_hot
+ (alpha_ts - alpha_t) * xt_one_hot
+ d_alpha * x
+ (1 - alpha_ts) * (1 - alpha_s) * limiting_distribution
) / (
alpha_t * self.vocab_size * torch.gather(x, -1, xt[..., None])
+ (1 - alpha_t)
)
raise NotImplementedError(
f"Diffusion type {self.diffusion_type} not implemented."
)
@staticmethod
def _sample_generation_timesteps(
generation_config: DiffusionGenerationConfig,
max_length: Optional[int] = None,
device: Optional[str] = None,
) -> torch.FloatTensor:
"""Sample timesteps for diffusion generation process."""
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
if max_length is None:
max_length = generation_config.max_new_tokens
if (
generation_config.first_hitting
# TODO: first-hitting does not work with posterior
and generation_config.sampling_strategy == "posterior"
):
timesteps = torch.FloatTensor([1.0])
for i in range(max_length, 0, -1):
u = torch.rand(1)
next_t = timesteps[-1] * u ** (1 / i)
timesteps = torch.cat((timesteps, next_t), dim=0)
return timesteps[1:].to(device) # type: ignore
return torch.linspace( # type: ignore
1.0,
generation_config.min_t,
generation_config.num_steps + 1,
device=device,
)[:-1]
def _generate_unconditional(
self,
generation_config: DiffusionGenerationConfig,
alpha_t: torch.FloatTensor,
alpha_s: torch.FloatTensor,
denoiser_inputs: Optional[DenoiserInput] = None,
model_output_cache: Optional[Dict[str, torch.FloatTensor]] = None,
cache: Optional[Dict[str, Any]] = None,
running_generation: Optional[torch.LongTensor] = None,
logits_processor: Optional[LogitsProcessorList] = None,
**kwargs: Any,
) -> Tuple[torch.LongTensor, Dict[str, torch.FloatTensor], Dict[str, Any]]:
cache = cache if cache is not None else {}
if model_output_cache is None: # execute function evaluation
backbone_output = self._backbone_forward(
denoiser_inputs,
fix_cache_length=True, # Do not let kv cache grow on each forward call
**cache,
**kwargs,
)
backbone_output = {k: v for k, v in backbone_output.items()}
logits = backbone_output.pop("logits")
cache = cache | backbone_output
log_x_theta = self._forward(logits, denoiser_inputs, **kwargs)
if logits_processor is not None:
for token_idx in range(log_x_theta.shape[1]):
# TODO: Looping over token positions like this does not allow for
# some processors, e.g. length penalty which could be applied all
# at once to the entire block, to be applied in parallel.
log_x_theta[:, token_idx] = logits_processor(
input_ids=running_generation,
scores=log_x_theta[:, token_idx], # type: ignore
)
log_x_theta = torch.log_softmax(log_x_theta, dim=-1) # re-normalize
x_theta = log_x_theta.exp()
else:
x_theta = model_output_cache["x_theta"]
model_output_cache = {"x_theta": x_theta}
prob_check_denom = denoiser_inputs.xt.numel()
if generation_config.sampling_strategy == "posterior":
q_xs = self._compute_posterior(
x_theta, denoiser_inputs.xt, alpha_t, alpha_s
)
assert abs((q_xs.sum() / prob_check_denom).item() - 1.0) < 1e-6, (
"Posterior probabilities not summing to 1."
)
assert q_xs.isnan().sum().item() == 0, "NaN found in the posterior."
xs = self._sample_categorical(q_xs, generation_config.do_sample)
output = torch.where(
(denoiser_inputs.xt != self.mask_token_id).bool(), # type: ignore
denoiser_inputs.xt,
xs,
)
elif generation_config.sampling_strategy == "predict_and_noise":
assert self.config.diffusion_type == "absorbing", (
"predict_and_noise decoding strategy only supports absorbing diffusion."
)
# assert (
# abs((x_theta.sum() / prob_check_denom).item() - 1.0) < 1e-6
# ), "Denoising output probabilities not summing to 1."
# assert x_theta.isnan().sum().item() == 0, (
# "NaN found in the denoising output."
# )
# Predict
xs = self._sample_categorical(x_theta, generation_config.do_sample)
xs_probs = x_theta.gather(-1, xs[..., None]).squeeze(dim=-1)
output = xs.clone()
# Noise
num_noise_indices = torch.minimum(
((1 - alpha_s) * generation_config.block_size).to(torch.int),
(denoiser_inputs.xt == self.mask_token_id).sum() - 1, # type: ignore
)
if generation_config.confidence_based_noising:
conf = x_theta.gather(-1, xs[..., None]).squeeze(-1)
conf = torch.where( # already decoded tokens have 'inf' confidence
(denoiser_inputs.xt == self.mask_token_id).bool(), # type: ignore
conf,
torch.inf,
)
noise_indices = conf.argsort(dim=-1)[..., :num_noise_indices]
elif generation_config.confidence_margin_based_noising:
top2 = torch.topk(x_theta, k=2, dim=-1).values # shape: (B, L, 2)
conf = (top2[..., 0] - top2[..., 1]).abs()
conf = torch.where( # already decoded tokens have 'inf' confidence
(denoiser_inputs.xt == self.mask_token_id).bool(), # type: ignore
conf,
torch.inf,
)
noise_indices = conf.argsort(dim=-1)[..., :num_noise_indices]
else:
# TODO: implement random noise indices selection
raise NotImplementedError
output[..., noise_indices] = self.mask_token_id
output = torch.where(
xs_probs >= generation_config.confidence_threshold, xs, output
)
else:
raise NotImplementedError(
f"Sampling strategy {generation_config.sampling_strategy} not"
" implemented."
)
return output, model_output_cache, cache # type: ignore
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.LongTensor] = None,
generation_config: Optional[DiffusionGenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
max_new_tokens: Optional[int] = None,
batch_size: Optional[int] = None,
device: Optional[str] = None,
tokenizer: Optional[PreTrainedTokenizer] = None,
disable_pbar: bool = False,
**kwargs: Any,
) -> torch.LongTensor:
# Setup sampling variables
if generation_config is None:
assert getattr(self, "generation_config", None) is not None, (
"Generation config must be provided if not present in the model."
)
generation_config = self.generation_config
if inputs is None:
inputs = torch.ones((batch_size, 1), device=device) * self.bos_token_id
if max_length is None:
if hasattr(generation_config, "max_length"):
max_length = generation_config.max_length
else:
max_length = self.max_length
if max_new_tokens is None:
if hasattr(generation_config, "max_new_tokens"):
max_new_tokens = generation_config.max_new_tokens
else:
max_new_tokens = max_length - inputs.shape[-1]
batch_size = batch_size if batch_size is not None else inputs.shape[0]
assert batch_size == 1, "Batched sampling not supported yet"
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
block_size = generation_config.block_size
max_blocks = max_new_tokens // block_size
# Sample max generation length tensor from prior
accumulated_samples = self._sample_prior(
device=device,
batch_size=batch_size,
length=max_blocks * block_size,
)
accumulated_samples = torch.cat([inputs, accumulated_samples], dim=-1)
if generation_config.use_cache and inputs.numel() > 0:
cache = self.update_cache(
inputs=inputs[:, : block_size * (inputs.shape[-1] // block_size)]
if generation_config.align_inputs_to_blocks
else inputs,
cache={},
)
else:
cache = None
if generation_config.align_inputs_to_blocks:
inputs_offset = (
block_size * (inputs.shape[-1] // block_size)
if inputs.numel() > 0
else 0
)
else:
inputs_offset = inputs.shape[-1] if inputs.numel() > 0 else 0
total_NFEs = 0
timesteps = self._sample_generation_timesteps( # Re-use in every block
generation_config, max_length=block_size, device=device
)
dt = (1 - generation_config.min_t) / len(timesteps)
block_pbar = tqdm(
range(max_blocks),
desc="Blocks",
leave=True,
disable=disable_pbar,
)
for block_id in block_pbar:
block_NFEs = 0
xt = accumulated_samples[
:,
inputs_offset + (block_id * block_size) : inputs_offset
+ ((block_id + 1) * block_size),
]
if self.mask_token_id not in xt:
continue
step_pbar = tqdm(
timesteps,
desc="T",
total=timesteps.shape[0],
leave=False,
disable=disable_pbar,
)
model_output_cache = None
context = (
accumulated_samples[:, : (block_id * block_size) + inputs_offset]
if not generation_config.use_cache
else None
)
# Used for logit processing
running_generation = accumulated_samples[
:,
inputs_offset : inputs_offset + (block_id * block_size),
]
for t in step_pbar:
if model_output_cache is None:
block_NFEs += 1
total_NFEs += 1
# t is 0-dim tensor, reshape to (1, 1, 1) for broadcasting
alpha_t, _ = self.noise_schedule(t)
alpha_s, _ = self.noise_schedule(t - dt)
alpha_t = alpha_t[None, None, None]
alpha_s = alpha_s[None, None, None]
denoiser_inputs, cache = self._prepare_inputs_inference(
input_ids=xt,
context=context,
cache=cache if generation_config.use_cache else None,
)
xs, model_output_cache, cache = self._generate_unconditional(
generation_config=generation_config,
alpha_t=alpha_t,
alpha_s=alpha_s,
denoiser_inputs=denoiser_inputs,
model_output_cache=model_output_cache,
cache=cache,
running_generation=running_generation, # type: ignore
logits_processor=logits_processor,
tokenizer=tokenizer,
**kwargs,
)
block_pbar.set_postfix(
NFEs=total_NFEs,
block_NFEs=block_NFEs,
)
if (
not torch.allclose(xs, denoiser_inputs.xt)
or not generation_config.use_model_output_cache
):
model_output_cache = None
if not generation_config.use_cache:
xt[..., -block_size:] = xs[..., -block_size:]
else:
xt = xs
if (
xt == self.mask_token_id
).sum().item() == 0 and self.config.diffusion_type == "absorbing":
break
accumulated_samples[
:,
inputs_offset + (block_id * block_size) : inputs_offset
+ ((block_id + 1) * block_size),
] = xt
if tokenizer is not None: # Useful for debugging
print(tokenizer.batch_decode(accumulated_samples))
if stopping_criteria is not None:
is_done = stopping_criteria(
input_ids=accumulated_samples[ # type: ignore
:,
inputs_offset : inputs_offset + ((block_id + 1) * block_size),
],
scores=None, # type: ignore
)
if torch.any(is_done):
accumulated_samples = accumulated_samples[
:,
: inputs_offset + ((block_id + 1) * block_size),
]
break
if generation_config.use_cache:
cache = self.update_cache(
inputs=xt,
cache=cache,
)
return accumulated_samples # type: ignore
class MDLMConfig(D3PMConfig):
"""Configuration class for MDLM models."""
model_type = "mdlm"
auto_map = {
"AutoConfig": "diffusion.MDLMConfig",
"AutoModel": "diffusion.MDLM",
"AutoModelForMaskedLM": "diffusion.MDLM",
}
class MDLM(D3PM):
"""Denoiser class for MDLM models."""
config_class = MDLMConfig
def __init__(self, config: MDLMConfig, **kwargs):
super().__init__(config, **kwargs)
self.neg_infinity = -1e12
def _forward(
self,
backbone_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs,
) -> torch.FloatTensor:
# Zero-mask probability
backbone_output[..., self.mask_token_id] = self.neg_infinity
log_probs = backbone_output - torch.logsumexp(
backbone_output, dim=-1, keepdim=True
)
# Copy-over unmasked: For the log_probs of the unmasked tokens, set all values
# to -infinity except for the indices corresponding to
# the unmasked tokens.
xt = denoiser_inputs.xt
unmasked_indices = xt != self.mask_token_id
log_probs[unmasked_indices] = self.neg_infinity
log_probs[unmasked_indices, xt[unmasked_indices]] = 0
return log_probs # type: ignore
def _compute_loss(
self,
model_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs: Any,
) -> LossAndNllOutput:
log_p_theta = torch.gather(
input=model_output, dim=-1, index=denoiser_inputs.x0[:, :, None]
).squeeze(-1)
nlls = (
log_p_theta
* denoiser_inputs.alpha_t_prime
/ (1 - denoiser_inputs.alpha_t)
* denoiser_inputs.tokens_mask
)
if self.training:
batch_nll = -(log_p_theta * denoiser_inputs.tokens_mask).sum(dim=-1)
else:
batch_nll = nlls.sum(dim=-1)
count = denoiser_inputs.tokens_mask.sum(dim=-1)
token_nll = (batch_nll / count).mean()
return LossAndNllOutput(
loss=token_nll, # type: ignore
nlls=nlls,
other_loss_terms={
"masked_tokens": (denoiser_inputs.xt == self.mask_token_id).int()
},
)
class BD3LMConfig(MDLMConfig):
"""Configuration class for BD3LM models."""
model_type = "bd3lm"
auto_map = {
"AutoConfig": "diffusion.BD3LMConfig",
"AutoModel": "diffusion.BD3LM",
"AutoModelForMaskedLM": "diffusion.BD3LM",
}
def __init__(
self,
block_size: Optional[int] = None,
eval_block_size: Optional[int] = None,
**kwargs,
):
super().__init__(**kwargs)
self.block_size = block_size
self.eval_block_size = (
eval_block_size if eval_block_size is not None else block_size
)
class BD3LM(MDLM):
"""Denoiser class for BD3LM models."""
config_class = BD3LMConfig
def __init__(self, config: BD3LMConfig, **kwargs):
super().__init__(config, **kwargs)
# noinspection PyUnusedLocal
@staticmethod
def _block_mask(
b,
h,
q_idx,
kv_idx,
block_size: Optional[int] = None,
seq_length: Optional[int] = None,
) -> torch.Tensor:
del b, h
# Indicate whether token belongs to xt or x0:
xt_flag_q = (q_idx >= seq_length).bool()
xt_flag_kv = (kv_idx >= seq_length).bool()
# Compute block indices
block_q = torch.where(
xt_flag_q, (q_idx - seq_length) // block_size, q_idx // block_size
)
block_kv = torch.where(
xt_flag_kv, (kv_idx - seq_length) // block_size, kv_idx // block_size
)
# **1. Offset Block-Causal Mask (M_OBC) **
offset_block_causal = (block_q > block_kv) & ~xt_flag_kv & xt_flag_q
# **2. Block Diagonal Mask (M_BD) **
block_diagonal = (block_q == block_kv) & (xt_flag_q == xt_flag_kv)
# **3. Block-Causal Mask (M_BC) **
block_causal = (block_q >= block_kv) & ~xt_flag_kv & ~xt_flag_q
# **3. Combine Masks **
return block_diagonal | offset_block_causal | block_causal
def _create_static_mask(self) -> None:
if self.config.attn_backend == "sdpa":
static_mask = self._block_mask(
b=None,
h=None,
q_idx=torch.arange(self.config.length * 2)[:, None],
kv_idx=torch.arange(self.config.length * 2)[None, :],
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=self.config.length,
)
self.register_buffer(
"static_attention_mask",
static_mask,
)
self.skip_params_for_push.append("static_attention_mask")
elif self.config.attn_backend == "flex_attention":
mask = partial(
self._block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=self.config.length,
)
self.static_attention_mask = create_block_mask(
mask,
B=None,
H=None,
Q_LEN=self.config.length * 2,
KV_LEN=self.config.length * 2,
)
def _ensure_no_unmasked_blocks(
self,
input_ids: torch.LongTensor,
xt: torch.LongTensor,
context_mask: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
n_blocks = xt.shape[1] // self.config.block_size
# If context overlaps w/block, ignore it
blocks_without_masks = ((xt == self.mask_token_id) + context_mask).reshape(
-1, n_blocks, self.config.block_size
).sum(dim=-1) == 0
if blocks_without_masks.sum() > 0:
num_remasks_per_block = torch.randint(
0,
self.config.block_size,
blocks_without_masks.shape,
device=xt.device,
)
rand = torch.rand(xt.shape[0], xt.shape[1], device=xt.device)
perm_indices = torch.argsort(
rand.view(xt.shape[0], n_blocks, self.config.block_size),
stable=True,
dim=-1,
)
remask_indices = perm_indices <= num_remasks_per_block[..., None]
xt = torch.where(
remask_indices.view(xt.shape[0], xt.shape[1])
* blocks_without_masks.repeat_interleave(self.config.block_size, dim=1),
self.mask_token_id,
xt,
)
if self.config.keep_clean_bos:
xt[..., 0] = input_ids[..., 0]
return xt
def _prepare_inputs(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.FloatTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
t: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Cache] = None,
):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if context_mask is None:
context_mask = torch.zeros_like(attention_mask)
if torch.is_floating_point(attention_mask):
attention_mask = attention_mask.to(torch.int)
context_mask = context_mask.to(torch.int)
if t is None:
t = torch.rand(
input_ids.shape[0],
input_ids.shape[1] // self.config.block_size
if self.training
else self.config.eval_block_size,
device=input_ids.device,
).repeat_interleave(
self.config.block_size
if self.training
else self.config.eval_block_size,
dim=-1,
)
alpha_t, alpha_t_prime = self.noise_schedule(t)
while alpha_t.ndim < 2:
alpha_t = alpha_t[..., None]
alpha_t_prime = alpha_t_prime[..., None]
xt = self._sample_q_xt(x0=input_ids, alpha_t=alpha_t, context_mask=context_mask)
# Ensure each block has at least 1 masked token
if self.training:
xt = self._ensure_no_unmasked_blocks(
input_ids,
xt,
context_mask,
)
if self.config.attn_backend == "sdpa":
decoder_attention_mask = (
self.static_attention_mask[None, ...]
& attention_mask.repeat(1, 2)[:, None, :]
& attention_mask.repeat(1, 2)[..., None]
)[:, None, ...] # Make attention mask 4D
decoder_attention_mask = self._preprocess_attention_mask(
decoder_attention_mask, dtype=torch.float
)
elif self.config.attn_backend == "flex_attention":
if context_mask.any():
raise NotImplementedError(
"flex_attention with context_mask not implemented yet."
)
elif attention_mask is not None and (attention_mask != 1).any():
padding_mask = create_attn_mask(
attention_mask.bool().repeat(2, 2).bool()
)
dec_masks = [
partial(
self._block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=self.config.length,
),
padding_mask,
]
decoder_attention_mask = create_block_mask(
and_masks(*dec_masks),
B=input_ids.shape[0],
H=None,
Q_LEN=input_ids.shape[1] * 2,
KV_LEN=input_ids.shape[1] * 2,
)
else:
decoder_attention_mask = self.static_attention_mask
else:
raise ValueError("Unknown backbone backend")
backbone_input_ids = torch.cat((input_ids, xt), dim=-1)
position_ids = (
torch.arange(input_ids.shape[1]).repeat(2).to(input_ids.device)[None, :]
)
if self.training and self.config.train_on_context:
tokens_mask = attention_mask
else:
tokens_mask = attention_mask * (1 - context_mask)
return DenoiserInput(
xt=backbone_input_ids, # type: ignore
x0=input_ids,
attention_mask=decoder_attention_mask, # type: ignore
tokens_mask=tokens_mask,
t=t,
alpha_t=alpha_t,
alpha_t_prime=alpha_t_prime,
backbone_kwargs={
"cache_position": position_ids[0],
"position_ids": position_ids,
},
)
def _prepare_inputs_inference(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
context: Optional[torch.LongTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
cache: Optional[Dict[str, Any]] = None,
return_updated_cache: bool = False,
**backbone_kwargs: Dict[str, Any],
) -> Tuple[DenoiserInput, Union[Dict[str, Any], None]]:
device = input_ids.device if input_ids is not None else context.device
assert input_ids is not None or context is not None, (
"Must provide either input_ids or context."
)
cache = cache if cache is not None else {}
past_key_values = cache.pop("past_key_values", DynamicCache())
if context is not None:
if input_ids is not None:
input_ids = torch.cat([context, input_ids], dim=-1)
else:
input_ids = context
cache_length = self._get_past_key_values_seq_length(past_key_values)
full_seq_length = cache_length + input_ids.shape[-1]
decoder_attention_mask = self.static_attention_mask[
None,
None,
cache_length:full_seq_length,
:full_seq_length,
] # Make attention mask 4D
decoder_attention_mask = self._preprocess_attention_mask(
decoder_attention_mask, dtype=torch.float
)
position_ids = torch.arange(cache_length, full_seq_length).to(device)[None, :]
return DenoiserInput(
xt=input_ids,
attention_mask=decoder_attention_mask,
context_mask=context_mask,
past_key_values=past_key_values,
backbone_kwargs={
"position_ids": position_ids,
}
| backbone_kwargs,
), cache
def _compute_loss(
self,
model_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs: Any,
) -> LossAndNllOutput:
input_length = denoiser_inputs.xt.shape[1] // 2
model_output = model_output[:, input_length:, ...]
return super()._compute_loss(
model_output=model_output, # type: ignore
denoiser_inputs=denoiser_inputs,
**kwargs,
)
class E2D2Config(BD3LMConfig):
"""Configuration class for E2D2 models."""
model_type = "e2d2"
auto_map = {
"AutoConfig": "diffusion.E2D2Config",
"AutoModel": "diffusion.E2D2",
"AutoModelForMaskedLM": "diffusion.E2D2",
}
def __init__(
self,
**kwargs,
):
super().__init__(**kwargs)
class E2D2(BD3LM):
"""Denoiser class for E2D2 models."""
config_class = E2D2Config
def __init__(self, config: E2D2Config, **kwargs):
super().__init__(config, **kwargs)
# noinspection PyUnusedLocal
@staticmethod
def _encoder_block_mask(
b,
h,
q_idx,
kv_idx,
block_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
q_idx (Tensor): Query indices.
kv_idx (Tensor): Key indices
b (Optional: int): batch size
h (Optional: int): number of heads
block_size (Optional: int): Defines the block structure.
Returns:
Encoder block-causal attention mask.
"""
# Compute block indices
block_q = q_idx // block_size
block_kv = kv_idx // block_size
# ** Block-Causal Mask **
return block_q >= block_kv
# noinspection PyUnusedLocal
@staticmethod
def _decoder_block_mask(
b,
h,
q_idx,
kv_idx,
block_size: Optional[int] = None,
seq_length: Optional[int] = None,
) -> torch.Tensor:
# Indicate whether token belongs to xt or x0:
xt_flag_kv = (kv_idx >= seq_length).bool()
# Compute block indices
block_q = q_idx // block_size
block_kv = torch.where(
xt_flag_kv, (kv_idx - seq_length) // block_size, kv_idx // block_size
)
# **1. Offset Block-Causal Mask (M_OBC) **
offset_block_causal = (block_q > block_kv) & ~xt_flag_kv
# **2. Block Diagonal Mask (M_BD) **
block_diagonal = (block_q == block_kv) & xt_flag_kv
# **3. Combine Masks **
return block_diagonal | offset_block_causal
def _create_static_mask(self) -> None:
if self.config.attn_backend == "flex_attention":
enc_mask = partial(
self._encoder_block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
)
encoder_attention_mask = create_block_mask(
enc_mask,
B=None,
H=None,
Q_LEN=self.config.length,
KV_LEN=self.config.length,
)
dec_mask = partial(
self._decoder_block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=self.config.length,
)
decoder_attention_mask = create_block_mask(
dec_mask,
B=None,
H=None,
Q_LEN=self.config.length,
KV_LEN=self.config.length * 2,
)
self.encoder_static_attention_mask = encoder_attention_mask
self.static_attention_mask = decoder_attention_mask
else:
encoder_static_mask = self._encoder_block_mask(
b=None, # type: ignore
h=None, # type: ignore
q_idx=torch.arange(self.config.length)[:, None],
kv_idx=torch.arange(self.config.length)[None, :],
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
)
decoder_static_mask = self._decoder_block_mask(
b=None,
h=None,
q_idx=torch.arange(self.config.length)[:, None],
kv_idx=torch.arange(self.config.length * 2)[None, :],
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=self.config.length,
)
self.register_buffer(
"encoder_static_attention_mask",
encoder_static_mask,
)
self.register_buffer(
"static_attention_mask",
decoder_static_mask,
)
self.skip_params_for_push.append("encoder_static_attention_mask")
self.skip_params_for_push.append("static_attention_mask")
def _prepare_inputs(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.FloatTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
t: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Cache] = None,
):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if context_mask is None:
context_mask = torch.zeros_like(attention_mask)
if torch.is_floating_point(attention_mask):
attention_mask = attention_mask.to(torch.int)
context_mask = context_mask.to(torch.int)
if t is None:
t = torch.rand(
input_ids.shape[0],
input_ids.shape[1] // self.config.block_size
if self.training
else self.config.eval_block_size,
device=input_ids.device,
).repeat_interleave(
self.config.block_size
if self.training
else self.config.eval_block_size,
dim=-1,
)
alpha_t, alpha_t_prime = self.noise_schedule(t)
while alpha_t.ndim < 2:
alpha_t = alpha_t[..., None]
alpha_t_prime = alpha_t_prime[..., None]
xt = self._sample_q_xt(x0=input_ids, alpha_t=alpha_t, context_mask=context_mask)
# Ensure each block has at least 1 masked token
if self.training:
xt = self._ensure_no_unmasked_blocks(
input_ids,
xt,
context_mask,
)
if self.config.attn_backend == "sdpa":
decoder_attention_mask = (
self.static_attention_mask[None, ...]
& attention_mask.repeat(1, 2)[:, None, :]
& attention_mask[..., None]
)[:, None, ...] # Make attention mask 4D
encoder_attention_mask = (
(
self.encoder_static_attention_mask[None, ...]
| context_mask[:, None, :]
)
& attention_mask[:, None, :]
& attention_mask[..., None]
)[:, None, ...] # Make attention mask 4D
encoder_attention_mask = self._preprocess_attention_mask(
encoder_attention_mask, dtype=torch.float
)
decoder_attention_mask = self._preprocess_attention_mask(
decoder_attention_mask, dtype=torch.float
)
elif self.config.attn_backend == "flex_attention":
# TODO enable bidirectional attention on context for seq2seq tasks
if context_mask.any():
raise NotImplementedError(
"flex_attention with context_mask not implemented yet."
)
elif attention_mask is not None and (attention_mask != 1).any():
padding_mask = create_attn_mask(attention_mask.bool())
dec_padding_mask = create_attn_mask(attention_mask.repeat(1, 2).bool())
enc_masks = [
partial(
self._encoder_block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
),
padding_mask,
]
encoder_attention_mask = create_block_mask(
and_masks(*enc_masks),
B=input_ids.shape[0],
H=None,
Q_LEN=input_ids.shape[1],
KV_LEN=input_ids.shape[1],
)
dec_masks = [
partial(
self._decoder_block_mask,
block_size=self.config.block_size
if self.training
else self.config.eval_block_size,
seq_length=input_ids.shape[1],
),
dec_padding_mask,
]
decoder_attention_mask = create_block_mask(
and_masks(*dec_masks),
B=input_ids.shape[0],
H=None,
Q_LEN=input_ids.shape[1],
KV_LEN=input_ids.shape[1] * 2,
)
else:
encoder_attention_mask = self.encoder_static_attention_mask
decoder_attention_mask = self.static_attention_mask
else:
raise ValueError("Unknown backbone backend")
position_ids = torch.arange(input_ids.shape[1]).to(input_ids.device)[None, :]
if self.training and self.config.train_on_context:
tokens_mask = attention_mask
else:
tokens_mask = attention_mask * (1 - context_mask)
return DenoiserInput(
xt=xt,
x0=input_ids,
attention_mask=decoder_attention_mask,
tokens_mask=tokens_mask,
t=t,
alpha_t=alpha_t,
alpha_t_prime=alpha_t_prime,
backbone_kwargs={
"encoder_input_ids": input_ids,
"encoder_attention_mask": encoder_attention_mask,
"encoder_position_ids": position_ids,
"encoder_cache_position": position_ids[0],
},
)
def _prepare_inputs_inference(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
context: Optional[torch.LongTensor] = None,
context_mask: Optional[torch.FloatTensor] = None,
cache: Optional[Dict[str, Any]] = None,
return_updated_cache: bool = False,
**backbone_kwargs: Dict[str, Any],
) -> Tuple[DenoiserInput, Union[Dict[str, Any], None]]:
device = input_ids.device if input_ids is not None else context.device
batch_size = input_ids.shape[0] if input_ids is not None else context.shape[0]
assert input_ids is not None or context is not None, (
"Must provide either input_ids or context."
)
if return_updated_cache: # Indicates this is a cache update step
context = input_ids
input_ids = None
position_ids, encoder_position_ids = None, None
if cache is not None:
past_key_values = cache.pop("past_key_values", DynamicCache())
encoder_past_key_values = cache.pop(
"encoder_past_key_values", DynamicCache()
)
encoder_last_hidden_state = cache.pop("encoder_last_hidden_state", None)
if input_ids is not None: # Skip enc: nothing new to cache
cache_length = self._get_past_key_values_seq_length(past_key_values)
if encoder_last_hidden_state is not None:
full_seq_length = (
cache_length
+ encoder_last_hidden_state.shape[1] # type: ignore
+ input_ids.shape[-1]
)
else:
full_seq_length = cache_length + input_ids.shape[-1]
encoder_attention_mask = None
position_ids = torch.arange(
cache_length, full_seq_length, device=device
)[None, :]
else: # Caching new tokens in the enc
encoder_cache_length = self._get_past_key_values_seq_length(
encoder_past_key_values
if len(encoder_past_key_values) > 0
else past_key_values
)
encoder_full_seq_length = encoder_cache_length + context.shape[-1]
encoder_attention_mask = torch.ones(
(
1,
1,
encoder_full_seq_length - encoder_cache_length,
encoder_full_seq_length,
),
device=context.device,
)
encoder_position_ids = torch.arange(
encoder_cache_length, encoder_full_seq_length
).to(device)[None, :]
encoder_attention_mask = self._preprocess_attention_mask(
encoder_attention_mask, dtype=torch.float
)
full_seq_length = -1 # Not used
else: # Not using kv-cache
past_key_values = None
encoder_past_key_values, encoder_last_hidden_state = None, None
if context is not None:
context_len = context.shape[1]
encoder_attention_mask = torch.ones(
(1, 1, context_len, context_len), device=context.device
)
encoder_attention_mask = self._preprocess_attention_mask(
encoder_attention_mask, dtype=torch.float
)
encoder_position_ids = torch.arange(context_len).to(device)[None, :]
else:
context_len = 0
encoder_attention_mask = None
if input_ids is not None:
full_seq_length = context_len + input_ids.shape[1]
else:
full_seq_length = context_len
position_ids = torch.arange(context_len, full_seq_length).to(device)[
None, :
]
if input_ids is not None:
decoder_attention_mask = torch.ones(
(batch_size, 1, input_ids.shape[1], full_seq_length),
device=device,
) # Make attention mask 4D
decoder_attention_mask = self._preprocess_attention_mask(
decoder_attention_mask, dtype=torch.float
)
else:
decoder_attention_mask = None
return DenoiserInput(
xt=input_ids,
attention_mask=decoder_attention_mask,
context_mask=context_mask,
past_key_values=past_key_values,
backbone_kwargs={
"position_ids": position_ids,
"encoder_input_ids": context,
"encoder_position_ids": encoder_position_ids,
"encoder_attention_mask": encoder_attention_mask,
"encoder_past_key_values": encoder_past_key_values,
"encoder_last_hidden_state": encoder_last_hidden_state,
}
| backbone_kwargs,
), cache # TODO: potentially returning cache None, violates return type
def _compute_loss(
self,
model_output: torch.FloatTensor,
denoiser_inputs: DenoiserInput,
**kwargs: Any,
) -> LossAndNllOutput:
# Use MDLM `_compute_loss`, since BD3LM method splits model_output
return super(BD3LM, self)._compute_loss(
model_output=model_output,
denoiser_inputs=denoiser_inputs,
**kwargs,
)