metadata
			language:
  - en
license: cc-by-nc-sa-4.0
datasets:
  - kyujinpy/orca_math_dpo
pipeline_tag: text-generation
model-index:
  - name: Sakura-SOLRCA-Math-Instruct-DPO-v2
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 71.25
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 88.52
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 66.13
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 72.16
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 83.03
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.91
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2
          name: Open LLM Leaderboard
Sakura-SOLRCA-Math-Instruct-DPO-v2
 
Model Details
Model Developers Kyujin Han (kyujinpy)
Method
Using DPO method.
With Intel/orca_dpo_pairs and argilla/distilabel-math-preference-dpo.  
I shared the merge version kyujinpy/orca_math_dpo.
I shared the information about my model. (training and code)
Please see: ⭐Sakura-SOLAR.  
Model Benchmark
Open leaderboard
- Follow up as link.
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | 
|---|---|---|---|---|---|---|---|
| Sakura-SOLRCA-Math-Instruct-DPO-v2 | 74.17 | 71.25 | 88.52 | 66.13 | 72.16 | 83.03 | 63.91 | 
| Sakura-SOLRCA-Math-Instruct-DPO-v1 | 74.13 | 71.25 | 88.48 | 66.21 | 72.12 | 82.87 | 63.84 | 
| Sakura-SOLRCA-Instruct-DPO | 74.05 | 71.16 | 88.49 | 66.17 | 72.10 | 82.95 | 63.46 | 
| Sakura-SOLAR-Instruct-DPO-v2 | 74.14 | 70.90 | 88.41 | 66.48 | 71.86 | 83.43 | 63.76 | 
| kyujinpy/Sakura-SOLAR-Instruct | 74.40 | 70.99 | 88.42 | 66.33 | 71.79 | 83.66 | 65.20 | 
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 74.17 | 
| AI2 Reasoning Challenge (25-Shot) | 71.25 | 
| HellaSwag (10-Shot) | 88.52 | 
| MMLU (5-Shot) | 66.13 | 
| TruthfulQA (0-shot) | 72.16 | 
| Winogrande (5-shot) | 83.03 | 
| GSM8k (5-shot) | 63.91 |