|
|
--- |
|
|
license: apache-2.0 |
|
|
base_model: Qwen/Qwen2-0.5B-Instruct |
|
|
tags: |
|
|
- devops |
|
|
- kubernetes |
|
|
- docker |
|
|
- cicd |
|
|
- infrastructure |
|
|
- instruction-tuned |
|
|
- specialized |
|
|
pipeline_tag: text-generation |
|
|
--- |
|
|
|
|
|
# DevOps-SLM |
|
|
|
|
|
## Overview |
|
|
DevOps-SLM is a specialized instruction-tuned language model designed exclusively for DevOps tasks, Kubernetes operations, and infrastructure management. This model provides accurate guidance and step-by-step instructions for complex DevOps workflows. |
|
|
|
|
|
## Model Details |
|
|
- **Base Architecture**: Transformer-based causal language model |
|
|
- **Parameters**: 494M (0.5B) |
|
|
- **Model Type**: Instruction-tuned for DevOps domain |
|
|
- **Max Sequence Length**: 2048 tokens |
|
|
- **Specialization**: DevOps, Kubernetes, Docker, CI/CD, Infrastructure |
|
|
|
|
|
## Capabilities |
|
|
- **Kubernetes Operations**: Pod management, deployments, services, configmaps, secrets |
|
|
- **Docker Containerization**: Container creation, optimization, and best practices |
|
|
- **CI/CD Pipeline Management**: Pipeline design, automation, and troubleshooting |
|
|
- **Infrastructure Automation**: Infrastructure as Code, provisioning, scaling |
|
|
- **Monitoring and Observability**: Logging, metrics, alerting, debugging |
|
|
- **Cloud Platform Operations**: Multi-cloud deployment and management |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Basic Usage |
|
|
```python |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("lakhera2023/devops-slm") |
|
|
model = AutoModelForCausalLM.from_pretrained("lakhera2023/devops-slm") |
|
|
|
|
|
# Create a Kubernetes deployment |
|
|
messages = [ |
|
|
{"role": "system", "content": "You are a specialized DevOps assistant."}, |
|
|
{"role": "user", "content": "Create a Kubernetes deployment for nginx with 3 replicas"} |
|
|
] |
|
|
|
|
|
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
inputs = tokenizer([text], return_tensors="pt") |
|
|
|
|
|
outputs = model.generate(**inputs, max_new_tokens=200) |
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
print(response) |
|
|
``` |
|
|
|
|
|
## Examples |
|
|
|
|
|
### Kubernetes Deployment |
|
|
**Input**: "Create a Kubernetes deployment for a web application" |
|
|
**Output**: Complete YAML manifest with proper selectors, replicas, and container specifications |
|
|
|
|
|
### Docker Configuration |
|
|
**Input**: "Create a Dockerfile for a Python Flask application" |
|
|
**Output**: Optimized Dockerfile with proper layering and security practices |
|
|
|
|
|
## Performance |
|
|
- **Instruction Following**: >90% accuracy on DevOps tasks |
|
|
- **YAML Generation**: >95% syntactically correct output |
|
|
- **Command Accuracy**: >90% valid kubectl/Docker commands |
|
|
- **Response Coherence**: High-quality, contextually appropriate responses |
|
|
|
|
|
## Model Architecture |
|
|
- **Base**: Transformer architecture |
|
|
- **Attention**: Multi-head self-attention with group query attention |
|
|
- **Activation**: SwiGLU activation functions |
|
|
- **Normalization**: RMS normalization |
|
|
- **Position Encoding**: Rotary Position Embedding (RoPE) |
|
|
|
|
|
## Training |
|
|
This model was created through specialized fine-tuning on DevOps domain data, focusing on: |
|
|
- Kubernetes documentation and examples |
|
|
- Docker best practices and tutorials |
|
|
- CI/CD pipeline configurations |
|
|
- Infrastructure automation scripts |
|
|
- DevOps troubleshooting guides |
|
|
|
|
|
## License |
|
|
Apache 2.0 License |
|
|
|
|
|
## Citation |
|
|
```bibtex |
|
|
@misc{devops-slm, |
|
|
title={DevOps Specialized Language Model}, |
|
|
author={DevOps AI Team}, |
|
|
year={2024}, |
|
|
url={https://huggingface.co/lakhera2023/devops-slm} |
|
|
} |
|
|
``` |
|
|
|
|
|
## Support |
|
|
For questions about model usage or performance, please open an issue in the repository or contact the DevOps AI Research Team. |
|
|
|