Adapter leaBroe/Heavy2Light_adapter for the Heavy2Light EncoderDecoder Model
An adapter for the Heavy2Light EncoderDecoder Model (Encoder: HeavyBERTa, Decoder: LightGPT) model that was trained with data from OAS and PLAbDab.
This adapter was created for usage with the Adapters library.
Usage
First, install adapters:
pip install -U adapters
Now, the adapter can be loaded and activated like this:
from transformers import EncoderDecoderModel, AutoTokenizer, GenerationConfig
from adapters import init
model_path = "leaBroe/Heavy2Light"
subfolder_path = "heavy2light_final_checkpoint"
model = EncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, subfolder=subfolder_path)
init(model)
adapter_name = model.load_adapter("leaBroe/Heavy2Light_adapter", set_active=True)
model.set_active_adapters(adapter_name)
then, the model can be used for inference:
generation_config = GenerationConfig.from_pretrained(model_path)
# example input heavy sequence
heavy_seq = "QLQVQESGPGLVKPSETLSLTCTVSGASSSIKKYYWGWIRQSPGKGLEWIGSIYSSGSTQYNPALGSRVTLSVDTSQTQFSLRLTSVTAADTATYFCARQGADCTDGSCYLNDAFDVWGRGTVVTVSS"
inputs = tokenizer(
heavy_seq,
padding="max_length",
truncation=True,
max_length=250,
return_tensors="pt"
)
generated_seq = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
num_return_sequences=1,
output_scores=True,
return_dict_in_generate=True,
generation_config=generation_config,
bad_words_ids=[[4]],
do_sample=True,
temperature=1.0,
)
generated_text = tokenizer.decode(
generated_seq.sequences[0],
skip_special_tokens=True,
)
print("Generated light sequence:", generated_text)
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support