YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Website Approve/Reject Classifier - Mistral-7B Fine-Tuning

Fine-tuned Mistral-7B model for classifying websites as "Approved" or "Rejected" using MLX-LM on Apple Silicon.

Dataset

  • Source: Airtable database (292 records)
  • Training Examples: 225 websites with scraped content
  • Validation Examples: 25 websites
  • Format: Mistral instruction format with <s>[INST]...[/INST]...</s>

Files

Data Pipeline

  • build_dataset.py - Scrapes Airtable + websites, creates training dataset
  • prepare_mlx_dataset.py - Splits data into train/valid for MLX-LM
  • mistral_training_dataset.jsonl - Raw training data (250 examples)
  • data/train.jsonl - Training set (225 examples)
  • data/valid.jsonl - Validation set (25 examples)

Model

  • download_mistral.py - Downloads Mistral-7B-v0.1 from HuggingFace
  • mistral-7b-model/ - Downloaded model files (27GB)

Fine-Tuning

  • finetune_mistral.py - Python script for LoRA fine-tuning
  • finetune_mistral.sh - Bash script for LoRA fine-tuning
  • adapters/ - LoRA adapter weights (created during training)

Testing

  • test_finetuned_model.py - Test the fine-tuned model

Training Configuration

Model: mistralai/Mistral-7B-v0.1
Fine-tune method: LoRA
Trainable parameters: 0.145% (10.5M / 7.2B)
Batch size: 2
Iterations: 1000
Learning rate: 1e-5
LoRA layers: 16

Usage

1. Build Dataset (if needed)

python3 build_dataset.py
python3 prepare_mlx_dataset.py

2. Download Model (if needed)

python3 download_mistral.py

3. Fine-Tune Model

python3 finetune_mistral.py
# OR
./finetune_mistral.sh

4. Test Model

python3 test_finetuned_model.py

5. Manual Inference

python3 -m mlx_lm.generate \
  --model mistralai/Mistral-7B-v0.1 \
  --adapter-path ./adapters \
  --prompt "<s>[INST] Analyze the following website text and classify it as 'Approved' or 'Rejected'. Website text: [YOUR TEXT HERE] [/INST]" \
  --max-tokens 10

Requirements

pip3 install mlx mlx-lm requests beautifulsoup4 huggingface-hub

Notes

  • Training runs on Apple Silicon using MLX framework
  • Some website texts are very long (up to 11K tokens) and get truncated to 2048 tokens
  • Model checkpoints are saved every 100 iterations to ./adapters/
  • Initial validation loss: 1.826
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support