SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Вӑл пӗлет: ҫак карапӑн командирӗ ҫамрӑк моряк, ӗлӗк артековец пулнӑскер, хӑйне вӗрентсе ӳстернӗ лагере асра тытса халӗ те тав туса саламлать.',
'Он уже знал, что кораблем этим командует молодой моряк-командир, сам когда-то бывший артековец и поныне хранящий благодарную память о лагере.',
'И разведчики это поняли.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,455,347 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 22.57 tokens
- max: 190 tokens
- min: 3 tokens
- mean: 22.28 tokens
- max: 207 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label Каяссипе каяс марри ҫинчен шухӑшланӑ ҫӗртех Петян каймалла пулнӑ, мӗншӗн тесен ачасем чылай малалла утнӑ ӗнтӗ.Так что, когда в страшной борьбе с совестью победа осталась все-таки на стороне Пети, а совесть была окончательно раздавлена, оказалось, что мальчики зашли уже довольно далеко.1.0— Чавсаран? — тӗлӗнчӗ Ван-Конет.— Локоть? — удивился Ван-Конет.1.0Юлашкинчен пирӗн гаубицӑсем те ӗҫе тытӑнчӗҫ.Наконец открыли огонь и наши гаубицы.1.0 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 20per_device_eval_batch_size: 20num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 20per_device_eval_batch_size: 20per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0069 | 500 | 0.6741 |
| 0.0137 | 1000 | 0.4247 |
| 0.0206 | 1500 | 0.3538 |
| 0.0275 | 2000 | 0.334 |
| 0.0344 | 2500 | 0.3155 |
| 0.0412 | 3000 | 0.2833 |
| 0.0481 | 3500 | 0.2689 |
| 0.0550 | 4000 | 0.2633 |
| 0.0618 | 4500 | 0.2577 |
| 0.0687 | 5000 | 0.2642 |
| 0.0756 | 5500 | 0.2484 |
| 0.0825 | 6000 | 0.237 |
| 0.0893 | 6500 | 0.2225 |
| 0.0962 | 7000 | 0.2359 |
| 0.1031 | 7500 | 0.2266 |
| 0.1099 | 8000 | 0.2222 |
| 0.1168 | 8500 | 0.2136 |
| 0.1237 | 9000 | 0.2236 |
| 0.1306 | 9500 | 0.2149 |
| 0.1374 | 10000 | 0.2199 |
| 0.1443 | 10500 | 0.206 |
| 0.1512 | 11000 | 0.216 |
| 0.1580 | 11500 | 0.2069 |
| 0.1649 | 12000 | 0.1903 |
| 0.1718 | 12500 | 0.1958 |
| 0.1786 | 13000 | 0.2076 |
| 0.1855 | 13500 | 0.2033 |
| 0.1924 | 14000 | 0.1893 |
| 0.1993 | 14500 | 0.2024 |
| 0.2061 | 15000 | 0.1873 |
| 0.2130 | 15500 | 0.1788 |
| 0.2199 | 16000 | 0.1959 |
| 0.2267 | 16500 | 0.1996 |
| 0.2336 | 17000 | 0.183 |
| 0.2405 | 17500 | 0.185 |
| 0.2474 | 18000 | 0.1752 |
| 0.2542 | 18500 | 0.1856 |
| 0.2611 | 19000 | 0.1948 |
| 0.2680 | 19500 | 0.1826 |
| 0.2748 | 20000 | 0.1672 |
| 0.2817 | 20500 | 0.1746 |
| 0.2886 | 21000 | 0.1801 |
| 0.2955 | 21500 | 0.1847 |
| 0.3023 | 22000 | 0.1673 |
| 0.3092 | 22500 | 0.1788 |
| 0.3161 | 23000 | 0.1667 |
| 0.3229 | 23500 | 0.1746 |
Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Model tree for lingtrain/labse-chuvash-3
Base model
sentence-transformers/LaBSE