Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| positive |
|
| negative |
|
| Label | Accuracy |
|---|---|
| all | 0.8644 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("lucasflins/first_model_setfit")
# Run inference
preds = model("sulgador d clitoris")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 2.9880 | 20 |
| Label | Training Sample Count |
|---|---|
| negative | 458 |
| positive | 545 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0010 | 1 | 0.3235 | - |
| 0.0504 | 50 | 0.2952 | - |
| 0.1008 | 100 | 0.2548 | - |
| 0.1512 | 150 | 0.2506 | - |
| 0.2016 | 200 | 0.247 | - |
| 0.2520 | 250 | 0.2168 | - |
| 0.3024 | 300 | 0.081 | - |
| 0.3528 | 350 | 0.0229 | - |
| 0.4032 | 400 | 0.0114 | - |
| 0.4536 | 450 | 0.0086 | - |
| 0.5040 | 500 | 0.0091 | - |
| 0.5544 | 550 | 0.0059 | - |
| 0.6048 | 600 | 0.0041 | - |
| 0.6552 | 650 | 0.0027 | - |
| 0.7056 | 700 | 0.0016 | - |
| 0.7560 | 750 | 0.0011 | - |
| 0.8065 | 800 | 0.001 | - |
| 0.8569 | 850 | 0.0011 | - |
| 0.9073 | 900 | 0.0014 | - |
| 0.9577 | 950 | 0.0009 | - |
| 1.0 | 992 | - | 0.2117 |
| 1.0081 | 1000 | 0.0007 | - |
| 1.0585 | 1050 | 0.0008 | - |
| 1.1089 | 1100 | 0.0005 | - |
| 1.1593 | 1150 | 0.0006 | - |
| 1.2097 | 1200 | 0.0007 | - |
| 1.2601 | 1250 | 0.0005 | - |
| 1.3105 | 1300 | 0.0004 | - |
| 1.3609 | 1350 | 0.0007 | - |
| 1.4113 | 1400 | 0.0007 | - |
| 1.4617 | 1450 | 0.0004 | - |
| 1.5121 | 1500 | 0.0005 | - |
| 1.5625 | 1550 | 0.0005 | - |
| 1.6129 | 1600 | 0.0005 | - |
| 1.6633 | 1650 | 0.0004 | - |
| 1.7137 | 1700 | 0.0003 | - |
| 1.7641 | 1750 | 0.0005 | - |
| 1.8145 | 1800 | 0.0006 | - |
| 1.8649 | 1850 | 0.0002 | - |
| 1.9153 | 1900 | 0.0003 | - |
| 1.9657 | 1950 | 0.0003 | - |
| 2.0 | 1984 | - | 0.2333 |
| 2.0161 | 2000 | 0.0003 | - |
| 2.0665 | 2050 | 0.0005 | - |
| 2.1169 | 2100 | 0.0005 | - |
| 2.1673 | 2150 | 0.0003 | - |
| 2.2177 | 2200 | 0.0002 | - |
| 2.2681 | 2250 | 0.0004 | - |
| 2.3185 | 2300 | 0.0006 | - |
| 2.3690 | 2350 | 0.0005 | - |
| 2.4194 | 2400 | 0.0001 | - |
| 2.4698 | 2450 | 0.0005 | - |
| 2.5202 | 2500 | 0.0006 | - |
| 2.5706 | 2550 | 0.0004 | - |
| 2.6210 | 2600 | 0.0004 | - |
| 2.6714 | 2650 | 0.0004 | - |
| 2.7218 | 2700 | 0.0001 | - |
| 2.7722 | 2750 | 0.0001 | - |
| 2.8226 | 2800 | 0.0001 | - |
| 2.8730 | 2850 | 0.0001 | - |
| 2.9234 | 2900 | 0.0001 | - |
| 2.9738 | 2950 | 0.0002 | - |
| 3.0 | 2976 | - | 0.2406 |
| 3.0242 | 3000 | 0.0001 | - |
| 3.0746 | 3050 | 0.0001 | - |
| 3.125 | 3100 | 0.0002 | - |
| 3.1754 | 3150 | 0.0002 | - |
| 3.2258 | 3200 | 0.0001 | - |
| 3.2762 | 3250 | 0.0001 | - |
| 3.3266 | 3300 | 0.0002 | - |
| 3.3770 | 3350 | 0.0001 | - |
| 3.4274 | 3400 | 0.0003 | - |
| 3.4778 | 3450 | 0.0002 | - |
| 3.5282 | 3500 | 0.0001 | - |
| 3.5786 | 3550 | 0.0001 | - |
| 3.6290 | 3600 | 0.0001 | - |
| 3.6794 | 3650 | 0.0001 | - |
| 3.7298 | 3700 | 0.0001 | - |
| 3.7802 | 3750 | 0.0001 | - |
| 3.8306 | 3800 | 0.0002 | - |
| 3.8810 | 3850 | 0.0003 | - |
| 3.9315 | 3900 | 0.0001 | - |
| 3.9819 | 3950 | 0.0001 | - |
| 4.0 | 3968 | - | 0.2248 |
| 4.0323 | 4000 | 0.0002 | - |
| 4.0827 | 4050 | 0.0001 | - |
| 4.1331 | 4100 | 0.0001 | - |
| 4.1835 | 4150 | 0.0002 | - |
| 4.2339 | 4200 | 0.0001 | - |
| 4.2843 | 4250 | 0.0001 | - |
| 4.3347 | 4300 | 0.0001 | - |
| 4.3851 | 4350 | 0.0001 | - |
| 4.4355 | 4400 | 0.0001 | - |
| 4.4859 | 4450 | 0.0001 | - |
| 4.5363 | 4500 | 0.0001 | - |
| 4.5867 | 4550 | 0.0001 | - |
| 4.6371 | 4600 | 0.0001 | - |
| 4.6875 | 4650 | 0.0001 | - |
| 4.7379 | 4700 | 0.0001 | - |
| 4.7883 | 4750 | 0.0001 | - |
| 4.8387 | 4800 | 0.0001 | - |
| 4.8891 | 4850 | 0.0001 | - |
| 4.9395 | 4900 | 0.0001 | - |
| 4.9899 | 4950 | 0.0001 | - |
| 5.0 | 4960 | - | 0.2303 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}