model documentation
#1
by
nazneen
- opened
README.md
CHANGED
|
@@ -1,12 +1,114 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- zh
|
| 4 |
-
license: "apache-2.0"
|
| 5 |
---
|
| 6 |
|
| 7 |
-
## Chinese MRC roberta_wwm_ext_large
|
| 8 |
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
* 此库发布的再训练模型,在 阅读理解/分类 等任务上均有大幅提高<br/>
|
| 11 |
(已有多位小伙伴在Dureader-2021等多个比赛中取得**top5**的成绩😁)
|
| 12 |
|
|
@@ -19,4 +121,97 @@ license: "apache-2.0"
|
|
| 19 |
| macbert-large (ours) | 70.45 / **68.13**| **83.4** |
|
| 20 |
| roberta-wwm-ext-large (ours) | 68.91 / 66.91 | 83.1 |
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
language:
|
| 4 |
- zh
|
|
|
|
| 5 |
---
|
| 6 |
|
|
|
|
| 7 |
|
| 8 |
+
|
| 9 |
+
# Model Card for Chinese MRC roberta_wwm_ext_large
|
| 10 |
+
|
| 11 |
+
# Model Details
|
| 12 |
+
|
| 13 |
+
## Model Description
|
| 14 |
+
|
| 15 |
+
使用大量中文MRC数据训练的roberta_wwm_ext_large模型,[详情可查看](https://github.com/basketballandlearn/MRC_Competition_Dureader)
|
| 16 |
+
|
| 17 |
+
- **Developed by:** luhua-rain
|
| 18 |
+
- **Shared by [Optional]:** luhua-rain
|
| 19 |
+
- **Model type:** Question Answering
|
| 20 |
+
- **Language(s) (NLP):** Chinese
|
| 21 |
+
- **License:** Apache 2.0
|
| 22 |
+
- **Parent Model:** BERT
|
| 23 |
+
- **Resources for more information:**
|
| 24 |
+
- [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# Uses
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
## Direct Use
|
| 32 |
+
The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
|
| 33 |
+
> 此mrc模型可直接用于open domain,点击体验
|
| 34 |
+
|
| 35 |
+
## Downstream Use [Optional]
|
| 36 |
+
|
| 37 |
+
The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
|
| 38 |
+
> 将此模型放到下游 MRC/分类 任务微调可比直接使用预训练语言模型提高2个点/1个点以上
|
| 39 |
+
|
| 40 |
+
## Out-of-Scope Use
|
| 41 |
+
|
| 42 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
| 43 |
+
|
| 44 |
+
# Bias, Risks, and Limitations
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
## Recommendations
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# Training Details
|
| 58 |
+
|
| 59 |
+
## Training Data
|
| 60 |
+
|
| 61 |
+
The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
|
| 62 |
+
> 网上收集的大量中文MRC数据 (其中包括公开的MRC数据集以及自己爬取的网页数据等, 囊括了医疗、教育、娱乐、百科、军事、法律、等领域。)
|
| 63 |
+
|
| 64 |
+
## Training Procedure
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
### Preprocessing
|
| 68 |
+
The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader):
|
| 69 |
+
>**清洗**
|
| 70 |
+
舍弃:context>1024的舍弃、question>64的舍弃、网页标签占比超过30%的舍弃。
|
| 71 |
+
重新标注:若answer>64且不完全出现在文档中,则采用模糊匹配: 计算所有片段与answer的相似度(F1值),取相似度最高的且高于阈值(0.8)
|
| 72 |
+
**数据标注**
|
| 73 |
+
收集的数据有一部分是不包含的位置标签的,仅仅是(问题-文章-答案)的三元组形式。 所以,对于只有答案而没有位置标签的数据通过正则匹配进行位置标注:
|
| 74 |
+
若答案片段多次出现在文章中,选择上下文与问题最相似的答案片段作为标准答案(使用F1值计算相似度,答案片段的上文48和下文48个字符作为上下文);
|
| 75 |
+
若答案片段只出现一次,则默认该答案为标准答案。
|
| 76 |
+
采用滑动窗口将长文档切分为多个重叠的子文档,故一个文档可能会生成多个有答案的子文档。
|
| 77 |
+
**无答案数据构造**
|
| 78 |
+
在跨领域数据上训练可以增加数据的领域多样性,进而提高模型的泛化能力,而负样本的引入恰好能使得模型编码尽可能多的数据,加强模型对难样本的识别能力:
|
| 79 |
+
1.) 对于每一个问题,随机从数据中捞取context,并保留对应的title作为负样本;(50%)
|
| 80 |
+
2.) 对于每一个问题,将其正样本中答案出现的句子删除,以此作为负样本;(20%)
|
| 81 |
+
3.) 对于每一个问题,使用BM25算法召回得分最高的前十个文档,然后根据得分采样出一个context作为负样本, 对于非实体类答案,剔除得分最高的context(30%)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
### Speeds, Sizes, Times
|
| 89 |
+
More information needed
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# Evaluation
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
## Testing Data, Factors & Metrics
|
| 96 |
+
|
| 97 |
+
### Testing Data
|
| 98 |
+
|
| 99 |
+
More information needed
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
### Factors
|
| 103 |
+
More information needed
|
| 104 |
+
|
| 105 |
+
### Metrics
|
| 106 |
+
|
| 107 |
+
More information needed
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
## Results
|
| 111 |
+
|
| 112 |
* 此库发布的再训练模型,在 阅读理解/分类 等任务上均有大幅提高<br/>
|
| 113 |
(已有多位小伙伴在Dureader-2021等多个比赛中取得**top5**的成绩😁)
|
| 114 |
|
|
|
|
| 121 |
| macbert-large (ours) | 70.45 / **68.13**| **83.4** |
|
| 122 |
| roberta-wwm-ext-large (ours) | 68.91 / 66.91 | 83.1 |
|
| 123 |
|
| 124 |
+
| 68.91 / 66.91 | 83.1 |
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# Model Examination
|
| 131 |
+
|
| 132 |
+
More information needed
|
| 133 |
+
|
| 134 |
+
# Environmental Impact
|
| 135 |
+
|
| 136 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 137 |
+
|
| 138 |
+
- **Hardware Type:** More information needed
|
| 139 |
+
- **Hours used:** More information needed
|
| 140 |
+
- **Cloud Provider:** More information needed
|
| 141 |
+
- **Compute Region:** More information needed
|
| 142 |
+
- **Carbon Emitted:** More information needed
|
| 143 |
+
|
| 144 |
+
# Technical Specifications [optional]
|
| 145 |
+
|
| 146 |
+
## Model Architecture and Objective
|
| 147 |
+
|
| 148 |
+
More information needed
|
| 149 |
+
|
| 150 |
+
## Compute Infrastructure
|
| 151 |
+
|
| 152 |
+
More information needed
|
| 153 |
+
|
| 154 |
+
### Hardware
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
More information needed
|
| 158 |
+
|
| 159 |
+
### Software
|
| 160 |
+
|
| 161 |
+
More information needed.
|
| 162 |
+
|
| 163 |
+
# Citation
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
**BibTeX:**
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
More information needed
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
# Glossary [optional]
|
| 175 |
+
More information needed
|
| 176 |
+
|
| 177 |
+
# More Information [optional]
|
| 178 |
+
The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
|
| 179 |
+
> 代码上传前已经跑通。文件不多,所以如果碰到报错之类的信息,可能是代码路径不对、缺少安装包等问题,一步步解决,可以提issue
|
| 180 |
+
环境
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# Model Card Authors [optional]
|
| 185 |
+
|
| 186 |
+
Luhua-rain in collaboration with Ezi Ozoani and the Hugging Face team
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# Model Card Contact
|
| 190 |
+
|
| 191 |
+
The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
|
| 192 |
+
> 合作
|
| 193 |
+
相关训练数据以及使用更多数据训练的模型/一起打比赛 可邮箱联系([email protected])~
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# How to Get Started with the Model
|
| 197 |
+
|
| 198 |
+
Use the code below to get started with the model.
|
| 199 |
+
|
| 200 |
+
<details>
|
| 201 |
+
<summary> Click to expand </summary>
|
| 202 |
+
|
| 203 |
+
```python
|
| 204 |
+
----- 使用方法 -----
|
| 205 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
| 206 |
+
|
| 207 |
+
model_name = "chinese_pretrain_mrc_roberta_wwm_ext_large" # "chinese_pretrain_mrc_macbert_large"
|
| 208 |
+
|
| 209 |
+
# Use in Transformers
|
| 210 |
+
tokenizer = AutoTokenizer.from_pretrained(f"luhua/{model_name}")
|
| 211 |
+
model = AutoModelForQuestionAnswering.from_pretrained(f"luhua/{model_name}")
|
| 212 |
|
| 213 |
+
# Use locally(通过 https://huggingface.co/luhua 下载模型及配置文件)
|
| 214 |
+
tokenizer = BertTokenizer.from_pretrained(f'./{model_name}')
|
| 215 |
+
model = AutoModelForQuestionAnswering.from_pretrained(f'./{model_name}')
|
| 216 |
+
```
|
| 217 |
+
</details>
|