SentenceTransformer based on distilbert/distilbert-base-uncased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased on the stsb dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'DistilBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("m-kojima/distilbert-base-uncased-sts-matryoshka")
sentences = [
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
'A man sitting on the floor in a room is strumming a guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Semantic Similarity
| Metric |
sts-dev-768 |
sts-test-768 |
| pearson_cosine |
0.8634 |
0.8354 |
| spearman_cosine |
0.8769 |
0.854 |
Semantic Similarity
| Metric |
sts-dev-512 |
sts-test-512 |
| pearson_cosine |
0.8615 |
0.8343 |
| spearman_cosine |
0.8765 |
0.8537 |
Semantic Similarity
| Metric |
sts-dev-256 |
sts-test-256 |
| pearson_cosine |
0.8579 |
0.8253 |
| spearman_cosine |
0.8739 |
0.8487 |
Semantic Similarity
| Metric |
sts-dev-128 |
sts-test-128 |
| pearson_cosine |
0.8482 |
0.8164 |
| spearman_cosine |
0.8701 |
0.8445 |
Semantic Similarity
| Metric |
sts-dev-64 |
sts-test-64 |
| pearson_cosine |
0.8313 |
0.8008 |
| spearman_cosine |
0.8606 |
0.8375 |
Training Details
Training Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 5,749 training samples
- Columns:
sentence1, sentence2, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
| type |
string |
string |
float |
| details |
- min: 6 tokens
- mean: 10.0 tokens
- max: 28 tokens
|
- min: 5 tokens
- mean: 9.95 tokens
- max: 25 tokens
|
- min: 0.0
- mean: 0.45
- max: 1.0
|
- Samples:
| sentence1 |
sentence2 |
score |
A plane is taking off. |
An air plane is taking off. |
1.0 |
A man is playing a large flute. |
A man is playing a flute. |
0.76 |
A man is spreading shreded cheese on a pizza. |
A man is spreading shredded cheese on an uncooked pizza. |
0.76 |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1, sentence2, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
| type |
string |
string |
float |
| details |
- min: 5 tokens
- mean: 15.1 tokens
- max: 45 tokens
|
- min: 6 tokens
- mean: 15.11 tokens
- max: 53 tokens
|
- min: 0.0
- mean: 0.42
- max: 1.0
|
- Samples:
| sentence1 |
sentence2 |
score |
A man with a hard hat is dancing. |
A man wearing a hard hat is dancing. |
1.0 |
A young child is riding a horse. |
A child is riding a horse. |
0.95 |
A man is feeding a mouse to a snake. |
The man is feeding a mouse to the snake. |
1.0 |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
num_train_epochs: 4
warmup_ratio: 0.1
fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
sts-dev-768_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-128_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-test-768_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-128_spearman_cosine |
sts-test-64_spearman_cosine |
| 0.2778 |
100 |
22.9607 |
21.5053 |
0.8399 |
0.8390 |
0.8391 |
0.8345 |
0.8198 |
- |
- |
- |
- |
- |
| 0.5556 |
200 |
21.7567 |
21.7006 |
0.8416 |
0.8410 |
0.8339 |
0.8291 |
0.8166 |
- |
- |
- |
- |
- |
| 0.8333 |
300 |
21.6856 |
22.0550 |
0.8641 |
0.8630 |
0.8586 |
0.8544 |
0.8394 |
- |
- |
- |
- |
- |
| 1.1111 |
400 |
21.1235 |
21.8466 |
0.8616 |
0.8609 |
0.8566 |
0.8528 |
0.8382 |
- |
- |
- |
- |
- |
| 1.3889 |
500 |
20.3754 |
21.8009 |
0.8661 |
0.8659 |
0.8629 |
0.8582 |
0.8485 |
- |
- |
- |
- |
- |
| 1.6667 |
600 |
20.2841 |
22.3990 |
0.8734 |
0.8726 |
0.8698 |
0.8644 |
0.8538 |
- |
- |
- |
- |
- |
| 1.9444 |
700 |
20.6808 |
21.7617 |
0.8665 |
0.8664 |
0.8634 |
0.8589 |
0.8488 |
- |
- |
- |
- |
- |
| 2.2222 |
800 |
19.4382 |
23.4419 |
0.8727 |
0.8724 |
0.8695 |
0.8647 |
0.8551 |
- |
- |
- |
- |
- |
| 2.5 |
900 |
19.1241 |
23.1544 |
0.8720 |
0.8720 |
0.8682 |
0.8642 |
0.8513 |
- |
- |
- |
- |
- |
| 2.7778 |
1000 |
19.3831 |
23.9067 |
0.8741 |
0.8739 |
0.8711 |
0.8662 |
0.8577 |
- |
- |
- |
- |
- |
| 3.0556 |
1100 |
18.9196 |
24.3653 |
0.8766 |
0.8766 |
0.8738 |
0.8696 |
0.8603 |
- |
- |
- |
- |
- |
| 3.3333 |
1200 |
18.0825 |
25.1969 |
0.8758 |
0.8760 |
0.8730 |
0.8690 |
0.8598 |
- |
- |
- |
- |
- |
| 3.6111 |
1300 |
18.0855 |
25.9958 |
0.8755 |
0.8752 |
0.8723 |
0.8685 |
0.8590 |
- |
- |
- |
- |
- |
| 3.8889 |
1400 |
18.3427 |
25.5680 |
0.8769 |
0.8765 |
0.8739 |
0.8701 |
0.8606 |
- |
- |
- |
- |
- |
| -1 |
-1 |
- |
- |
- |
- |
- |
- |
- |
0.8540 |
0.8537 |
0.8487 |
0.8445 |
0.8375 |
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.1.1
- Transformers: 4.53.0
- PyTorch: 2.9.0+cu128
- Accelerate: 1.10.1
- Datasets: 3.6.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CoSENTLoss
@article{10531646,
author={Huang, Xiang and Peng, Hao and Zou, Dongcheng and Liu, Zhiwei and Li, Jianxin and Liu, Kay and Wu, Jia and Su, Jianlin and Yu, Philip S.},
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
title={CoSENT: Consistent Sentence Embedding via Similarity Ranking},
year={2024},
doi={10.1109/TASLP.2024.3402087}
}