Hybrid Naming Scheme & Benchmark Synopsis
This report summarizes baseline and hybrid quantization results for Qwen3-30B-A3B-Instruct-2507-unsloth as measured by the Magic Quant pipeline.
Naming Scheme
Model variants follow a structured suffix convention that encodes both the base conversion mode and per-tensor quantization schemes.
| Suffix Example | Meaning |
|---|---|
BF16 |
Pure full-precision family baseline (no quantization). |
Q8_0, Q6_K, Q5_K, Q4_K_M, IQ4_NL, MXFP4_MOE |
Pure model-wide quantization baselines. |
iq4_nl-emb_Q4_K-head_Q4_K-moe_rt_Q4_K |
Base conversion mode iq4_nl with per-group schemes: embeddings (emb_), output head (head_), MoE router (moe_rt_). |
...-aq_F16-akv_Q8_0-fd_Q4_K-ao_Q5_K |
Extended sensitivity groups: Attention Q (aq_), Attention K+V (akv_), FFN Down (fd_), Attention Output (ao_). |
mxfp4_moe-emb_IQ4_NL-head_Q6_K-moe_exp_MXFP4-moe_rt_Q6_K |
MXFP4-centric hybrids with MoE expert group (moe_exp_) and mixed IQ / Q-schemes per tensor group. |
In general, anything after the base model name is a purely mechanical description of how the weights were transformed, not a new training run.
Benchmark Methodology
All models were tested with a unified automated harness using llama.cpp tools.
Included tests:
Throughput:
llama-benchwith descending GPU offload (-ngl 35 → 0) and automatic OOM retry.
Highest successful TPS is recorded.Perplexity:
Three domains: general, code, math.
Each uses an auto-generated corpus of ~32k tokens.
Perplexity is computed withllama-perplexityat 2048-token context.
Same GPU retry logic as above.Precision loss:
Each model is compared to its family BF16 baseline.
Precision-loss % is computed for all PPL domains, plus an averaged score.
Models are ranked by this metric.
Table - Overview of Results
Comparing to BF16.
| model_name | size_reduction | tps_change |
|---|---|---|
| iq4_nl-akv_Q8_0-ao_Q8_0-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0-head_Q8_0 | 46.84% | 124.10% |
| Q5_K | 64.45% | 163.87% |
| mxfp4_moe-akv_Q5_K-ao_Q5_K-aq_Q6_K-emb_IQ4_NL-fd_Q6_K-fug_IQ4_NL-head_BF16-moe_rt_IQ4_NL | 66.73% | 148.52% |
| mxfp4_moe-akv_Q5_K-ao_IQ4_NL-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL-head_Q8_0-moe_rt_Q8_0 | 63.29% | 166.48% |
| IQ4_NL | 71.42% | 211.80% |
| iq4_nl-akv_IQ4_NL-ao_IQ4_NL-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL-head_IQ4_NL | 71.81% | 236.69% |
- All percentages compared against the selected family BF16 baseline.
Table - File Size + TPS + Avg Precision Loss
| model_name | file_size_gb | bench_tps | avg_prec_loss |
|---|---|---|---|
| BF16 | 56.90 | 44.48 | 0.0000% |
| iq4_nl-akv_Q8_0-ao_Q8_0-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0-head_Q8_0 | 30.25 | 99.68 | 0.0771% |
| Q5_K | 20.23 | 117.37 | 0.2007% |
| mxfp4_moe-akv_Q5_K-ao_Q5_K-aq_Q6_K-emb_IQ4_NL-fd_Q6_K-fug_IQ4_NL-head_BF16-moe_rt_IQ4_NL | 18.93 | 110.54 | 0.3929% |
| mxfp4_moe-akv_Q5_K-ao_IQ4_NL-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL-head_Q8_0-moe_rt_Q8_0 | 20.89 | 118.53 | 0.3939% |
| IQ4_NL | 16.26 | 138.69 | 0.4198% |
| iq4_nl-akv_IQ4_NL-ao_IQ4_NL-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL-head_IQ4_NL | 16.04 | 149.76 | 2.6323% |
avg_prec_lossis the averaged absolute precision-loss % vs BF16.
Table - PPL Columns
| model_name | gen | gen_er | code | code_er | math | math_er |
|---|---|---|---|---|---|---|
| BF16 | 6.2581 | 0.1279 | 1.2981 | 0.0072 | 5.7092 | 0.1064 |
| iq4_nl-akv_Q8_0-ao_Q8_0-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0-head_Q8_0 | 6.2536 | 0.1277 | 1.2991 | 0.0072 | 5.7045 | 0.1063 |
| Q5_K | 6.2777 | 0.1283 | 1.3006 | 0.0073 | 5.7037 | 0.1062 |
| mxfp4_moe-akv_Q5_K-ao_Q5_K-aq_Q6_K-emb_IQ4_NL-fd_Q6_K-fug_IQ4_NL-head_BF16-moe_rt_IQ4_NL | 6.2854 | 0.1284 | 1.3036 | 0.0072 | 5.7274 | 0.1068 |
| mxfp4_moe-akv_Q5_K-ao_IQ4_NL-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL-head_Q8_0-moe_rt_Q8_0 | 6.2759 | 0.1276 | 1.3042 | 0.0072 | 5.6848 | 0.1050 |
| IQ4_NL | 6.2669 | 0.1274 | 1.3111 | 0.0073 | 5.7159 | 0.1061 |
| iq4_nl-akv_IQ4_NL-ao_IQ4_NL-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL-head_IQ4_NL | 6.4836 | 0.1337 | 1.3170 | 0.0075 | 5.8712 | 0.1099 |
- gen = ppl_general, code = ppl_code, math = ppl_math
Table - Precision Loss Columns
| model_name | loss_general | loss_code | loss_math |
|---|---|---|---|
| BF16 | 0.0000 | 0.0000 | 0.0000 |
| iq4_nl-akv_Q8_0-ao_Q8_0-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0-head_Q8_0 | 0.0719 | 0.0770 | 0.0823 |
| Q5_K | 0.3132 | 0.1926 | 0.0963 |
| mxfp4_moe-akv_Q5_K-ao_Q5_K-aq_Q6_K-emb_IQ4_NL-fd_Q6_K-fug_IQ4_NL-head_BF16-moe_rt_IQ4_NL | 0.4362 | 0.4237 | 0.3188 |
| mxfp4_moe-akv_Q5_K-ao_IQ4_NL-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL-head_Q8_0-moe_rt_Q8_0 | 0.2844 | 0.4699 | 0.4274 |
| IQ4_NL | 0.1406 | 1.0015 | 0.1174 |
| iq4_nl-akv_IQ4_NL-ao_IQ4_NL-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL-head_IQ4_NL | 3.6033 | 1.4560 | 2.8375 |
- loss_* values are absolute precision-loss % vs BF16 per domain.