File size: 5,757 Bytes
4fecdd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import math
from typing import List, Optional, Union

import torch
from PIL import Image
from transformers import BatchFeature
from transformers.models.qwen2_vl import Qwen2VLProcessor

from colpali_engine.utils.processing_utils import BaseVisualRetrieverProcessor


class ColQwen2Processor(BaseVisualRetrieverProcessor, Qwen2VLProcessor):
    """
    Processor for ColQwen2.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.tokenizer.padding_side = "left"
        self.min_pixels =  4 * 28 * 28
        self.max_pixels =  768 * 28 * 28
        self.factor = 28
        self.max_ratio = 200

    @staticmethod
    def round_by_factor(number: float, factor: int) -> int:
        """Returns the closest integer to 'number' that is divisible by 'factor'."""
        return round(number / factor) * factor

    @staticmethod
    def ceil_by_factor(number: float, factor: int) -> int:
        """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
        return math.ceil(number / factor) * factor

    @staticmethod
    def floor_by_factor(number: float, factor: int) -> int:
        """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
        return math.floor(number / factor) * factor


    def smart_resize(self, height: int, width: int, factor: int, min_pixels: int, max_pixels: int) -> tuple[int, int]:
        """
        Rescales the image so that the following conditions are met:

        1. Both dimensions (height and width) are divisible by 'factor'.

        2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].

        3. The aspect ratio of the image is maintained as closely as possible.
        """
        if max(height, width) / min(height, width) > self.max_ratio:
            raise ValueError(
                f"absolute aspect ratio must be smaller than {self.max_ratio}, "
                f"got {max(height, width) / min(height, width)}"
            )
        h_bar = max(factor, self.round_by_factor(height, factor))
        w_bar = max(factor, self.round_by_factor(width, factor))
        if h_bar * w_bar > max_pixels:
            beta = math.sqrt((height * width) / max_pixels)
            h_bar = self.floor_by_factor(height / beta, factor)
            w_bar = self.floor_by_factor(width / beta, factor)
        elif h_bar * w_bar < min_pixels:
            beta = math.sqrt(min_pixels / (height * width))
            h_bar = self.ceil_by_factor(height * beta, factor)
            w_bar = self.ceil_by_factor(width * beta, factor)
        return h_bar, w_bar

    def process_images(
        self,
        images: List[Image.Image],
    ) -> BatchFeature:
        """
        Process images for ColPali.
        """
        texts_doc = (["<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n"]
                     * len(images))

        def resize_and_convert(image: Image.Image) -> Image.Image:
            image_size = image.size
            resized_height, resized_width = self.smart_resize(image_size[1],
                                                         image_size[0],
                                                         factor=self.factor,
                                                         min_pixels=self.min_pixels,
                                                         max_pixels=self.max_pixels)
            # print(f"Resizing image from {image_size} to {(resized_height, resized_width)}")
            return image.convert("RGB").resize((resized_width, resized_height))

        images = [resize_and_convert(image) for image in images]


        batch_doc = self(
            text=texts_doc,
            images=images,
            padding="longest",
            return_tensors="pt"
        )


        # The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs
        offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]
        # separate pixel_values for each image
        pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())
        # pad pixel_values to the same length to be able to make it into a tensor
        max_length = max([len(pv) for pv in pixel_values])
        pixel_values = [torch.cat([pv,
                                   torch.zeros((max_length - len(pv), pv.shape[1]),
                                               dtype=pv.dtype, device=pv.device)]) for pv in pixel_values]
        batch_doc["pixel_values"] = torch.stack(pixel_values)


        return batch_doc

    def process_queries(
        self,
        queries: List[str],
        max_length: int = 50,
        suffix: Optional[str] = None,
    ) -> BatchFeature:
        """
        Process queries for ColPali.
        """
        if suffix is None:
            suffix = "<pad>" * 10
        texts_query: List[str] = []

        for query in queries:
            query = f"Query: {query}"
            query += suffix  # add suffix (pad tokens)
            texts_query.append(query)

        batch_query = self(
            text=texts_query,
            return_tensors="pt",
            padding="longest",
            # max_length=max_length + self.image_seq_length,
        )

        return batch_query

    def score(
        self,
        qs: List[torch.Tensor],
        ps: List[torch.Tensor],
        device: Optional[Union[str, torch.device]] = None,
        **kwargs,
    ) -> torch.Tensor:
        """
        Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
        """
        return self.score_multi_vector(qs, ps, device=device, **kwargs)