SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("Mehularora/scrabble-embed-v1")
# Run inference
sentences = [
'BOLDING',
'< BOLD, confident and fearless [adj]',
'< NAUCH, nautch (intricate traditional Indian dance) [n]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7391, 0.0112],
# [0.7391, 1.0000, 0.0722],
# [0.0112, 0.0722, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset:
dictionary-test - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.597 |
| cosine_accuracy@3 | 0.7253 |
| cosine_accuracy@5 | 0.7496 |
| cosine_accuracy@10 | 0.7743 |
| cosine_precision@1 | 0.597 |
| cosine_precision@3 | 0.2418 |
| cosine_precision@5 | 0.1499 |
| cosine_precision@10 | 0.0774 |
| cosine_recall@1 | 0.597 |
| cosine_recall@3 | 0.7253 |
| cosine_recall@5 | 0.7496 |
| cosine_recall@10 | 0.7743 |
| cosine_ndcg@10 | 0.6919 |
| cosine_mrr@10 | 0.6649 |
| cosine_map@100 | 0.6677 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 227,518 training samples
- Columns:
wordanddefinition - Approximate statistics based on the first 1000 samples:
word definition type string string details - min: 3 tokens
- mean: 4.9 tokens
- max: 9 tokens
- min: 6 tokens
- mean: 15.82 tokens
- max: 44 tokens
- Samples:
word definition SLURPIEST< SLURPY, making a slurping noise [adj]CRISPNESSES< CRISPNESS, < CRISP, fresh and firm [adj]CECUTIENCYa tendency to blindness [n] - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 256 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64learning_rate: 2e-05num_train_epochs: 1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | dictionary-test_cosine_ndcg@10 |
|---|---|---|---|
| 0.0281 | 100 | 1.5353 | 0.6306 |
| 0.0563 | 200 | 1.2836 | 0.6543 |
| 0.0844 | 300 | 1.2305 | 0.6637 |
| 0.1125 | 400 | 1.1669 | 0.6651 |
| 0.1406 | 500 | 1.1904 | 0.6714 |
| 0.1688 | 600 | 1.0998 | 0.6738 |
| 0.1969 | 700 | 1.0655 | 0.6751 |
| 0.2250 | 800 | 1.095 | 0.6781 |
| 0.2532 | 900 | 1.1535 | 0.6813 |
| 0.2813 | 1000 | 1.0047 | 0.6814 |
| 0.3094 | 1100 | 1.0749 | 0.6809 |
| 0.3376 | 1200 | 1.0642 | 0.6813 |
| 0.3657 | 1300 | 1.0718 | 0.6851 |
| 0.3938 | 1400 | 1.023 | 0.6854 |
| 0.4219 | 1500 | 1.0429 | 0.6850 |
| 0.4501 | 1600 | 1.0088 | 0.6849 |
| 0.4782 | 1700 | 1.0129 | 0.6873 |
| 0.5063 | 1800 | 0.988 | 0.6874 |
| 0.5345 | 1900 | 1.0413 | 0.6882 |
| 0.5626 | 2000 | 1.0043 | 0.6885 |
| 0.5907 | 2100 | 0.9929 | 0.6886 |
| 0.6188 | 2200 | 0.9403 | 0.6899 |
| 0.6470 | 2300 | 0.9789 | 0.6907 |
| 0.6751 | 2400 | 0.9595 | 0.6912 |
| 0.7032 | 2500 | 0.9786 | 0.6914 |
| 0.7314 | 2600 | 0.9647 | 0.6911 |
| 0.7595 | 2700 | 0.9245 | 0.6897 |
| 0.7876 | 2800 | 0.9685 | 0.6906 |
| 0.8158 | 2900 | 0.9778 | 0.6896 |
| 0.8439 | 3000 | 0.939 | 0.6906 |
| 0.8720 | 3100 | 0.9822 | 0.6904 |
| 0.9001 | 3200 | 1.0038 | 0.6913 |
| 0.9283 | 3300 | 0.9297 | 0.6910 |
| 0.9564 | 3400 | 0.9215 | 0.6915 |
| 0.9845 | 3500 | 0.948 | 0.6919 |
Framework Versions
- Python: 3.11.4
- Sentence Transformers: 5.1.2
- Transformers: 4.57.3
- PyTorch: 2.9.1+cpu
- Accelerate: 1.12.0
- Datasets: 4.4.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 12
Model tree for mehularora/scrabble-embed-v1
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy@1 on dictionary testself-reported0.597
- Cosine Accuracy@3 on dictionary testself-reported0.725
- Cosine Accuracy@5 on dictionary testself-reported0.750
- Cosine Accuracy@10 on dictionary testself-reported0.774
- Cosine Precision@1 on dictionary testself-reported0.597
- Cosine Precision@3 on dictionary testself-reported0.242
- Cosine Precision@5 on dictionary testself-reported0.150
- Cosine Precision@10 on dictionary testself-reported0.077
- Cosine Recall@1 on dictionary testself-reported0.597
- Cosine Recall@3 on dictionary testself-reported0.725