term-mapper
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False, 'architecture': 'MPNetModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'board cert agency code, Board Cert Agency Code',
'2nd board cert',
'comments',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.6759, -0.0045],
# [ 0.6759, 1.0000, 0.0552],
# [-0.0045, 0.0552, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 61,927 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 9 tokens
- mean: 10.39 tokens
- max: 11 tokens
- min: 3 tokens
- mean: 6.42 tokens
- max: 25 tokens
- Samples:
anchor positive accepting patients ind, Accepting Patients INDprimary spec accepting new patients for pcps and obaccepting patients ind, Accepting Patients INDaccepting new patients (all practitioner types ongoing outpatient basis) (y n) (no blanks)accepting patients ind, Accepting Patients INDacc ind for pts - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 7,092 evaluation samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 11.39 tokens
- max: 19 tokens
- min: 3 tokens
- mean: 6.96 tokens
- max: 23 tokens
- Samples:
anchor positive accepting patients ind, Accepting Patients INDopen close panelaccepting patients ind, Accepting Patients INDpanel statusaccepting patients ind, Accepting Patients INDcommercial panel status - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32learning_rate: 2e-05warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0258 | 50 | 0.8668 | - |
| 0.0517 | 100 | 0.7505 | 0.6548 |
| 0.0775 | 150 | 0.6506 | - |
| 0.1033 | 200 | 0.4672 | 0.4107 |
| 0.1291 | 250 | 0.403 | - |
| 0.1550 | 300 | 0.3284 | 0.2954 |
| 0.1808 | 350 | 0.3005 | - |
| 0.2066 | 400 | 0.2248 | 0.2149 |
| 0.2324 | 450 | 0.219 | - |
| 0.2583 | 500 | 0.1794 | 0.1685 |
| 0.2841 | 550 | 0.1441 | - |
| 0.3099 | 600 | 0.1522 | 0.1397 |
| 0.3357 | 650 | 0.1322 | - |
| 0.3616 | 700 | 0.1254 | 0.1283 |
| 0.3874 | 750 | 0.1194 | - |
| 0.4132 | 800 | 0.134 | 0.1140 |
| 0.4390 | 850 | 0.0932 | - |
| 0.4649 | 900 | 0.1025 | 0.0957 |
| 0.4907 | 950 | 0.1063 | - |
| 0.5165 | 1000 | 0.0956 | 0.0945 |
| 0.5424 | 1050 | 0.071 | - |
| 0.5682 | 1100 | 0.0727 | 0.0836 |
| 0.5940 | 1150 | 0.0895 | - |
| 0.6198 | 1200 | 0.0786 | 0.0750 |
| 0.6457 | 1250 | 0.0923 | - |
| 0.6715 | 1300 | 0.0905 | 0.0742 |
| 0.6973 | 1350 | 0.0522 | - |
| 0.7231 | 1400 | 0.0645 | 0.0693 |
| 0.7490 | 1450 | 0.0711 | - |
| 0.7748 | 1500 | 0.0655 | 0.0627 |
| 0.8006 | 1550 | 0.0532 | - |
| 0.8264 | 1600 | 0.0602 | 0.0615 |
| 0.8523 | 1650 | 0.0674 | - |
| 0.8781 | 1700 | 0.0537 | 0.0564 |
| 0.9039 | 1750 | 0.0578 | - |
| 0.9298 | 1800 | 0.0643 | 0.0533 |
| 0.9556 | 1850 | 0.0655 | - |
| 0.9814 | 1900 | 0.0562 | 0.0519 |
| 1.0072 | 1950 | 0.0538 | - |
| 1.0331 | 2000 | 0.043 | 0.0470 |
| 1.0589 | 2050 | 0.035 | - |
| 1.0847 | 2100 | 0.0412 | 0.0454 |
| 1.1105 | 2150 | 0.0362 | - |
| 1.1364 | 2200 | 0.0454 | 0.0449 |
| 1.1622 | 2250 | 0.0438 | - |
| 1.1880 | 2300 | 0.0453 | 0.0433 |
| 1.2138 | 2350 | 0.0298 | - |
| 1.2397 | 2400 | 0.0351 | 0.0444 |
| 1.2655 | 2450 | 0.0349 | - |
| 1.2913 | 2500 | 0.0391 | 0.0431 |
| 1.3171 | 2550 | 0.0404 | - |
| 1.3430 | 2600 | 0.0371 | 0.0423 |
| 1.3688 | 2650 | 0.0382 | - |
| 1.3946 | 2700 | 0.0325 | 0.0420 |
| 1.4205 | 2750 | 0.0394 | - |
| 1.4463 | 2800 | 0.0469 | 0.0421 |
| 1.4721 | 2850 | 0.0466 | - |
| 1.4979 | 2900 | 0.0374 | 0.0407 |
| 1.5238 | 2950 | 0.0321 | - |
| 1.5496 | 3000 | 0.022 | 0.0388 |
| 1.5754 | 3050 | 0.0229 | - |
| 1.6012 | 3100 | 0.0354 | 0.0367 |
| 1.6271 | 3150 | 0.0275 | - |
| 1.6529 | 3200 | 0.036 | 0.0358 |
| 1.6787 | 3250 | 0.0349 | - |
| 1.7045 | 3300 | 0.0359 | 0.0337 |
| 1.7304 | 3350 | 0.0386 | - |
| 1.7562 | 3400 | 0.029 | 0.0341 |
| 1.7820 | 3450 | 0.0348 | - |
| 1.8079 | 3500 | 0.0241 | 0.0342 |
| 1.8337 | 3550 | 0.0281 | - |
| 1.8595 | 3600 | 0.0239 | 0.0323 |
| 1.8853 | 3650 | 0.0281 | - |
| 1.9112 | 3700 | 0.0301 | 0.0323 |
| 1.9370 | 3750 | 0.0186 | - |
| 1.9628 | 3800 | 0.0246 | 0.0308 |
| 1.9886 | 3850 | 0.0315 | - |
| 2.0145 | 3900 | 0.0185 | 0.0302 |
| 2.0403 | 3950 | 0.0272 | - |
| 2.0661 | 4000 | 0.025 | 0.0304 |
| 2.0919 | 4050 | 0.0262 | - |
| 2.1178 | 4100 | 0.02 | 0.0306 |
| 2.1436 | 4150 | 0.0163 | - |
| 2.1694 | 4200 | 0.0301 | 0.0294 |
| 2.1952 | 4250 | 0.0176 | - |
| 2.2211 | 4300 | 0.0206 | 0.0297 |
| 2.2469 | 4350 | 0.0121 | - |
| 2.2727 | 4400 | 0.0206 | 0.0294 |
| 2.2986 | 4450 | 0.018 | - |
| 2.3244 | 4500 | 0.0178 | 0.0291 |
| 2.3502 | 4550 | 0.0153 | - |
| 2.3760 | 4600 | 0.0219 | 0.0288 |
| 2.4019 | 4650 | 0.0214 | - |
| 2.4277 | 4700 | 0.0212 | 0.0281 |
| 2.4535 | 4750 | 0.0183 | - |
| 2.4793 | 4800 | 0.0302 | 0.0280 |
| 2.5052 | 4850 | 0.0158 | - |
| 2.5310 | 4900 | 0.02 | 0.0274 |
| 2.5568 | 4950 | 0.0171 | - |
| 2.5826 | 5000 | 0.0275 | 0.0269 |
| 2.6085 | 5050 | 0.0193 | - |
| 2.6343 | 5100 | 0.0158 | 0.0269 |
| 2.6601 | 5150 | 0.0179 | - |
| 2.6860 | 5200 | 0.0214 | 0.0269 |
| 2.7118 | 5250 | 0.0225 | - |
| 2.7376 | 5300 | 0.0166 | 0.0264 |
| 2.7634 | 5350 | 0.0243 | - |
| 2.7893 | 5400 | 0.0154 | 0.0262 |
| 2.8151 | 5450 | 0.0245 | - |
| 2.8409 | 5500 | 0.0122 | 0.0261 |
| 2.8667 | 5550 | 0.0234 | - |
| 2.8926 | 5600 | 0.0217 | 0.0259 |
| 2.9184 | 5650 | 0.0166 | - |
| 2.9442 | 5700 | 0.0165 | 0.0258 |
| 2.9700 | 5750 | 0.0126 | - |
| 2.9959 | 5800 | 0.0201 | 0.0258 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.0.0
- Transformers: 4.53.3
- PyTorch: 2.7.1+cu126
- Accelerate: 1.9.0
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1,090
Model tree for mihirsingh141/retriever_module
Base model
sentence-transformers/all-mpnet-base-v2