MiDashengLM-7B-0804 (4bit, GPTQ quantized)

The 4bit (w4a16) weights for mispeech/midashenglm-7b-0804-fp32, quantized by GPTQ.

An ideal choice for resource-constrained environments. It offers broad GPU compatibility and a smaller memory footprint, making it suitable for deployment where VRAM, memory, or storage is limited, provided that a slight trade-off in quality is acceptable.

Usage

Load Model

from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer

model_id = "mispeech/midashenglm-7b-0804-w4a16-gptq"
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

Construct Prompt

user_prompt = "Caption the audio."  # You may try any other prompt

messages = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are a helpful language and speech assistant."}
        ],
    },
    {
        "role": "user",
        "content": [
            {"type": "text", "text": user_prompt},
            {
                "type": "audio",
                "path": "/path/to/example.wav",
                # or "url": "https://example.com/example.wav"
                # or "audio": np.random.randn(16000)
            },
        ],
    },
]

Generate Output

import torch

with torch.no_grad():
    model_inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        add_special_tokens=True,
        return_dict=True,
    ).to(device=model.device, dtype=model.dtype)
    generation = model.generate(**model_inputs)
    output = tokenizer.batch_decode(generation, skip_special_tokens=True)  # ["An engine is idling."]

Citation

MiDashengLM is under the Apache License 2.0, and we encourage its use in both research and business applications.

If you find MiDashengLM useful in your research, please consider citing our work:

@techreport{midashenglm7b,
  title      = {MiDashengLM: Efficient Audio Understanding with General Audio Captions},
  author     = {{Horizon Team, MiLM Plus}},
  institution= {Xiaomi Inc.},
  year       = {2025},
  note       = {Contributors: Heinrich Dinkel et al. (listed alphabetically in Appendix B)},
  url        = {https://arxiv.org/abs/2508.03983},
  eprint     = {2508.03983},
}
Downloads last month
72
Safetensors
Model size
3B params
Tensor type
I64
·
I32
·
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mispeech/midashenglm-7b-0804-w4a16-gptq

Finetuned
(37)
this model

Collection including mispeech/midashenglm-7b-0804-w4a16-gptq