MiDashengLM-7B-0804
Collection
4 items
•
Updated
The 4bit (w4a16) weights for mispeech/midashenglm-7b-0804-fp32, quantized by GPTQ.
An ideal choice for resource-constrained environments. It offers broad GPU compatibility and a smaller memory footprint, making it suitable for deployment where VRAM, memory, or storage is limited, provided that a slight trade-off in quality is acceptable.
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer
model_id = "mispeech/midashenglm-7b-0804-w4a16-gptq"
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
user_prompt = "Caption the audio." # You may try any other prompt
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful language and speech assistant."}
],
},
{
"role": "user",
"content": [
{"type": "text", "text": user_prompt},
{
"type": "audio",
"path": "/path/to/example.wav",
# or "url": "https://example.com/example.wav"
# or "audio": np.random.randn(16000)
},
],
},
]
import torch
with torch.no_grad():
model_inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
add_special_tokens=True,
return_dict=True,
).to(device=model.device, dtype=model.dtype)
generation = model.generate(**model_inputs)
output = tokenizer.batch_decode(generation, skip_special_tokens=True) # ["An engine is idling."]
MiDashengLM is under the Apache License 2.0, and we encourage its use in both research and business applications.
If you find MiDashengLM useful in your research, please consider citing our work:
@techreport{midashenglm7b,
title = {MiDashengLM: Efficient Audio Understanding with General Audio Captions},
author = {{Horizon Team, MiLM Plus}},
institution= {Xiaomi Inc.},
year = {2025},
note = {Contributors: Heinrich Dinkel et al. (listed alphabetically in Appendix B)},
url = {https://arxiv.org/abs/2508.03983},
eprint = {2508.03983},
}
Base model
Qwen/Qwen2.5-Omni-7B