MiDashengLM-7B-1021
Collection
4 items
•
Updated
The FP8 weights for mispeech/midashenglm-7b-1021-fp32.
Optimized for Hopper-class (H100 and newer) GPUs, leveraging hardware support for enhanced performance and memory savings. While older GPUs may see limited performance gains, FP8 can still be used to conserve VRAM, and storage.
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer
model_id = "mispeech/midashenglm-7b-1021-fp8"
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
user_prompt = "Caption the audio." # You may try any other prompt
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful language and speech assistant."}
],
},
{
"role": "user",
"content": [
{"type": "text", "text": user_prompt},
{
"type": "audio",
"path": "/path/to/example.wav",
# or "url": "https://example.com/example.wav"
# or "audio": np.random.randn(16000)
},
],
},
]
import torch
with torch.no_grad():
model_inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
add_special_tokens=True,
return_dict=True,
).to(device=model.device, dtype=model.dtype)
generation = model.generate(**model_inputs)
output = tokenizer.batch_decode(generation, skip_special_tokens=True) # ["An engine is idling."]
MiDashengLM is under the Apache License 2.0, and we encourage its use in both research and business applications.
If you find MiDashengLM useful in your research, please consider citing our work:
@techreport{midashenglm7b,
title = {MiDashengLM: Efficient Audio Understanding with General Audio Captions},
author = {{Horizon Team, MiLM Plus}},
institution= {Xiaomi Inc.},
year = {2025},
note = {Contributors: Heinrich Dinkel et al. (listed alphabetically in Appendix B)},
url = {https://arxiv.org/abs/2508.03983},
eprint = {2508.03983},
}
Base model
Qwen/Qwen2.5-Omni-7B