Ministral 3 8B Instruct 2512
A balanced model in the Ministral 3 family, Ministral 3 8B is a powerful, efficient tiny language model with vision capabilities.
This model is the instruct post-trained version in FP8, fine-tuned for instruction tasks, making it ideal for chat and instruction based use cases.
The Ministral 3 family is designed for edge deployment, capable of running on a wide range of hardware. Ministral 3 8B can even be deployed locally, capable of fitting in 12GB of VRAM in FP8, and less if further quantized.
Learn more in our blog post here.
Key Features
Ministral 3 8B consists of two main architectural components:
- 8.4B Language Model
- 0.4B Vision Encoder
The Ministral 3 8B Instruct model offers the following capabilities:
- Vision: Enables the model to analyze images and provide insights based on visual content, in addition to text.
- Multilingual: Supports dozens of languages, including English, French, Spanish, German, Italian, Portuguese, Dutch, Chinese, Japanese, Korean, Arabic.
- System Prompt: Maintains strong adherence and support for system prompts.
- Agentic: Offers best-in-class agentic capabilities with native function calling and JSON outputting.
- Edge-Optimized: Delivers best-in-class performance at a small scale, deployable anywhere.
- Apache 2.0 License: Open-source license allowing usage and modification for both commercial and non-commercial purposes.
- Large Context Window: Supports a 256k context window.
Use Cases
Perfect for balanced performance in local or embedded systems, combining versatility with efficiency.
- Chat interfaces in constrained environments
- Local daily-driver AI assistant
- Image/document description and understanding
- Translation and content generation
- Specialized agentic use cases
- Fine-tuning and specialization
- And more...
Bringing advanced AI capabilities to resource-constrained environments.
Ministral 3 Family
| Model Name | Type | Precision | Link |
|---|---|---|---|
| Ministral 3 3B Base 2512 | Base pre-trained | BF16 | Hugging Face |
| Ministral 3 3B Instruct 2512 | Instruct post-trained | FP8 | Hugging Face |
| Ministral 3 3B Reasoning 2512 | Reasoning capable | BF16 | Hugging Face |
| Ministral 3 8B Base 2512 | Base pre-trained | BF16 | Hugging Face |
| Ministral 3 8B Instruct 2512 | Instruct post-trained | FP8 | Hugging Face |
| Ministral 3 8B Reasoning 2512 | Reasoning capable | BF16 | Hugging Face |
| Ministral 3 14B Base 2512 | Base pre-trained** | BF16 | Hugging Face |
| Ministral 3 14B Instruct 2512 | Instruct post-trained | FP8 | Hugging Face |
| Ministral 3 14B Reasoning 2512 | Reasoning capable | BF16 | Hugging Face |
Other formats available here.
Benchmark Results
We compare Ministral 3 to similar sized models.
Reasoning
| Model | AIME25 | AIME24 | GPQA Diamond | LiveCodeBench |
|---|---|---|---|---|
| Ministral 3 14B | 0.850 | 0.898 | 0.712 | 0.646 |
| Qwen3-14B (Thinking) | 0.737 | 0.837 | 0.663 | 0.593 |
| Ministral 3 8B | 0.787 | 0.860 | 0.668 | 0.616 |
| Qwen3-VL-8B-Thinking | 0.798 | 0.860 | 0.671 | 0.580 |
| Ministral 3 3B | 0.721 | 0.775 | 0.534 | 0.548 |
| Qwen3-VL-4B-Thinking | 0.697 | 0.729 | 0.601 | 0.513 |
Instruct
| Model | Arena Hard | WildBench | MATH Maj@1 | MM MTBench |
|---|---|---|---|---|
| Ministral 3 14B | 0.551 | 68.5 | 0.904 | 8.49 |
| Qwen3 14B (Non-Thinking) | 0.427 | 65.1 | 0.870 | NOT MULTIMODAL |
| Gemma3-12B-Instruct | 0.436 | 63.2 | 0.854 | 6.70 |
| Ministral 3 8B | 0.509 | 66.8 | 0.876 | 8.08 |
| Qwen3-VL-8B-Instruct | 0.528 | 66.3 | 0.946 | 8.00 |
| Ministral 3 3B | 0.305 | 56.8 | 0.830 | 7.83 |
| Qwen3-VL-4B-Instruct | 0.438 | 56.8 | 0.900 | 8.01 |
| Qwen3-VL-2B-Instruct | 0.163 | 42.2 | 0.786 | 6.36 |
| Gemma3-4B-Instruct | 0.318 | 49.1 | 0.759 | 5.23 |
Base
| Model | Multilingual MMLU | MATH CoT 2-Shot | AGIEval 5-shot | MMLU Redux 5-shot | MMLU 5-shot | TriviaQA 5-shot |
|---|---|---|---|---|---|---|
| Ministral 3 14B | 0.742 | 0.676 | 0.648 | 0.820 | 0.794 | 0.749 |
| Qwen3 14B Base | 0.754 | 0.620 | 0.661 | 0.837 | 0.804 | 0.703 |
| Gemma 3 12B Base | 0.690 | 0.487 | 0.587 | 0.766 | 0.745 | 0.788 |
| Ministral 3 8B | 0.706 | 0.626 | 0.591 | 0.793 | 0.761 | 0.681 |
| Qwen 3 8B Base | 0.700 | 0.576 | 0.596 | 0.794 | 0.760 | 0.639 |
| Ministral 3 3B | 0.652 | 0.601 | 0.511 | 0.735 | 0.707 | 0.592 |
| Qwen 3 4B Base | 0.677 | 0.405 | 0.570 | 0.759 | 0.713 | 0.530 |
| Gemma 3 4B Base | 0.516 | 0.294 | 0.430 | 0.626 | 0.589 | 0.640 |
Usage
The model can be used with the following frameworks;
vllm: See heretransformers: See here
vLLM
We recommend using this model with vLLM.
Installation
Make sure to install vllm >= 1.12.0:
pip install vllm --upgrade
Doing so should automatically install mistral_common >= 1.8.6.
To check:
python -c "import mistral_common; print(mistral_common.__version__)"
You can also make use of a ready-to-go docker image or on the docker hub.
Serve
Due to their size and the FP8 format of their weights Ministral-3-3B-Instruct-2512, Ministral-3-8B-Instruct-2512 and Ministral-3-14B-Instruct-2512 can run on a single 1xH200 GPU.
A simple launch command is:
vllm serve mistralai/Ministral-3-8B-Instruct-2512 \
--tokenizer_mode mistral --config_format mistral --load_format mistral \
--enable-auto-tool-choice --tool-call-parser mistral
Key parameter notes:
- enable-auto-tool-choice: Required when enabling tool usage.
- tool-call-parser mistral: Required when enabling tool usage.
Additional flags:
- You can set
--max-model-lento preserve memory. By default it is set to262144which is quite large but not necessary for most scenarios. - You can set
--max-num-batched-tokensto balance throughput and latency, higher means higher throughput but higher latency.
Usage of the model
Here we assume that the model mistralai/Ministral-3-8B-Instruct-2512 is served and you can ping it to the domain localhost with the port 8000 which is the default for vLLM.
Vision Reasoning
Let's see if the Ministral 3 knows when to pick a fight !
from datetime import datetime, timedelta
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 262144
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = repo_id.split("/")[-1]
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
)
print(response.choices[0].message.content)
Function Calling
Let's solve some equations thanks to our simple Python calculator tool.
import json
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 262144
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
image_url = "https://math-coaching.com/img/fiche/46/expressions-mathematiques.jpg"
def my_calculator(expression: str) -> str:
return str(eval(expression))
tools = [
{
"type": "function",
"function": {
"name": "my_calculator",
"description": "A calculator that can evaluate a mathematical expression.",
"parameters": {
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "The mathematical expression to evaluate.",
},
},
"required": ["expression"],
},
},
},
{
"type": "function",
"function": {
"name": "rewrite",
"description": "Rewrite a given text for improved clarity",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "The input text to rewrite",
}
},
},
},
},
]
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Thanks to your calculator, compute the results for the equations that involve numbers displayed in the image.",
},
{
"type": "image_url",
"image_url": {
"url": image_url,
},
},
],
},
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
tools=tools,
tool_choice="auto",
)
tool_calls = response.choices[0].message.tool_calls
results = []
for tool_call in tool_calls:
function_name = tool_call.function.name
function_args = tool_call.function.arguments
if function_name == "my_calculator":
result = my_calculator(**json.loads(function_args))
results.append(result)
messages.append({"role": "assistant", "tool_calls": tool_calls})
for tool_call, result in zip(tool_calls, results):
messages.append(
{
"role": "tool",
"tool_call_id": tool_call.id,
"name": tool_call.function.name,
"content": result,
}
)
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
)
print(response.choices[0].message.content)
Text-Only Request
Ministral 3 can follow your instructions to the letter.
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 262144
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": "Write me a sentence where every word starts with the next letter in the alphabet - start with 'a' and end with 'z'.",
},
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
)
assistant_message = response.choices[0].message.content
print(assistant_message)
Transformers
You can also use Ministral 3 8B Instruct 2512 with Transformers !
Transformers very recently added preliminary support for FP8, so please make sure to install from main:
uv pip install git+https://github.com/huggingface/transformers
To make the best use of our model with Transformers make sure to have installed mistral-common >= 1.8.6 to use our tokenizer.
pip install mistral-common --upgrade
Try it out by running the following snippet.
By default Transformers will load the checkpoint in FP8 and dequantize it to BF16 on the fly, which means the model currently does not make use of accelerated FP8-kernels. Compatibility with accelerated FP8-kernels is currently worked on and will be available in a couple of weeks. Stay tuned!
Then load our tokenizer along with the model and generate:
Python snippet
import torch
from transformers import Mistral3ForConditionalGeneration, MistralCommonBackend
model_id = "mistralai/Ministral-3-8B-Instruct-2512"
tokenizer = MistralCommonBackend.from_pretrained(model_id)
model = Mistral3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
tokenized = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True)
tokenized["input_ids"] = tokenized["input_ids"].to(device="cuda")
tokenized["pixel_values"] = tokenized["pixel_values"].to(dtype=torch.bfloat16, device="cuda")
image_sizes = [tokenized["pixel_values"].shape[-2:]]
output = model.generate(
**tokenized,
image_sizes=image_sizes,
max_new_tokens=512,
)[0]
decoded_output = tokenizer.decode(output[len(tokenized["input_ids"][0]):])
print(decoded_output)
Note:
Transformers allows you to automatically convert the checkpoint to Bfloat16. To do so, simply load the model as follows:
from transformers import Mistral3ForConditionalGeneration, FineGrainedFP8Config
model_id = "mistralai/Ministral-3-8B-Instruct-2512"
model = Mistral3ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
quantization_config=FineGrainedFP8Config(dequantize=True)
)
License
This model is licensed under the Apache 2.0 License.
You must not use this model in a manner that infringes, misappropriates, or otherwise violates any third party’s rights, including intellectual property rights.
- Downloads last month
- 1,270
Model tree for mistralai/Ministral-3-8B-Instruct-2512
Base model
mistralai/Ministral-3-8B-Base-2512