mouceen's picture
Update README.md
a008a76 verified
---
license: mit
tags:
- osu
- music-generation
- beatmap-generation
- lora
---
# LoRA: Arles Style for Mapperatorinator
This is a LoRA (Low-Rank Adaptation) fine-tune for the [OliBomby/Mapperatorinator-v30](https://huggingface.co/OliBomby/Mapperatorinator-v30) model. It has been trained on a custom dataset of beatmaps to generate maps in the "Arles" style.
## Model Details
- **Base Model:** `OliBomby/Mapperatorinator-v30`
- **Model Type:** LoRA
## How to Use
You can use this LoRA in two ways: by downloading the files locally or by loading it directly from the Hugging Face Hub.
Best to use on songs that are hybrid bursts/short streams and jumps
### Option 1: Local Files
1. **Download and Structure Files:** Download the `adapter_config.json` and `adapter_model.safetensors` files from this repository. Create a folder and place the files inside like this:
```
arles_lora/
β”œβ”€β”€ adapter_config.json
└── adapter_model.safetensors
```
2. **Run Inference:** Use the `lora_path` argument to point to the local **folder** you created.
```bash
python inference.py \
audio_path='/path/to/your/audio.mp3' \
output_path='/path/to/your/output_folder' \
lora_path='/path/to/your/arles_lora' \
... # other arguments
```
### Option 2: Direct from Hugging Face Hub
You can load the LoRA directly from this repository without manually downloading the files. The script will handle it automatically.
1. **Run Inference:** Use the `lora_path` argument and set it to the name of this repository.
```bash
python inference.py \
audio_path='/path/to/your/audio.mp3' \
output_path='/path/to/your/output_folder' \
lora_path='mouceen/Mapperatorinator-v30-LoRA-Arles-v1' \
... # other arguments
```